Answer:
18.6012339739 A
Explanation:
= Vacuum permeability = 
L = Length of wire = 55 cm
N = Number of turns = 4000
I = Current
Magnetic field is given by

The current necessary to produce this field is 18.6012339739 A

<u>Given :</u>








<u>Let's Slove :</u><u> </u>



If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string.
If a single light in a parallel string fails, then only that one goes out.
The rest of the lights in the string continue to shimmer and glimmer.
If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
Hope this helps :)
When describing linear motion, you need only one graph representing each of the three terms, while projectile motion requires a graph of the x and y axes. Graphs of simple harmonic motion are sine curves. Circular motion is different from other forms of motion because the speed of the object is constant.
The density will be 1.05
The mass will be 13.65