Answer:
Explanation:
a ) Let the distance required in former case be d₁ .
initial velocity u = 30 m /s , final velocity v =0 , deceleration a = 7.00 m /s²
v² = u² - 2 a s
0 = 30² - 2 x 7 x d₁
d₁ = 64.28 m
b) initial velocity u = 30 m /s , final velocity v =0 , deceleration a = 5.00 m /s²
v² = u² - 2 a s
0 = 30² - 2 x 5 x d₂
d₂ = 90 m
c)
t = .5 s
s₁ = ut - .5 at²
= 30 x .5 - .5 x 7 x .5²
= 15 - .875
= 14.125 m
t = .5 s
s₂ = ut - .5 at²
= 30 x .5 - .5 x 5 x .5²
= 15 - .625
= 14.375 m
Newton's First Law of Motion:
I. Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it.
Newton's Second Law of Motion:
II. The relationship between an object's mass m, its acceleration a, and the applied force F is F = ma. Acceleration and force are vectors (as indicated by their symbols being displayed in slant bold font); in this law the direction of the force vector is the same as the direction of the acceleration vector.
Newton's Third Law of Motion:
III. For every action there is an equal and opposite reaction.
The sun . plz give me a nice thank you
A uniform solid sphere rolls down an incline without slipping<span>. </span>If the linear acceleration of the center of mass of the sphere is 0.19g<span>, </span>then what is the angle the incline makes with the horizontal<span>?</span>