The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height.
<span>In that particular situation, you can prove it like this: </span>
<span>initial velocity is Vo </span>
<span>launch angle is α </span>
<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>
<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>
<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>
<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>
<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>
<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>
<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
Answer:
a) x(t) = 10t + (2/3)*t^3
b) x*(0.1875) = 10.18 m
Explanation:
Note: The position of the horse is x = 2m. There is a typing error in the question. Otherwise, The solution to cubic equation holds a negative value of time t.
Given:
- v(t) = 10 + 2*t^2 (radar gun)
- x*(t) = 10 + 5t^2 + 3t^3 (our coordinate)
Find:
-The position x of horse as a function of time t in radar system.
-The position of the horse at x = 2m in our coordinate system
Solution:
- The position of horse according to radar gun:
v(t) = dx / dt = 10 + 2*t^2
- Separate variables:
dx = (10 + 2*t^2).dt
- Integrate over interval x = 0 @ t= 0
x(t) = 10t + (2/3)*t^3
- time @ x = 2 :
2 = 10t + (2/3)*t^3
0 = 10t + (2/3)*t^3 + 2
- solve for t:
t = 0.1875 s
- Evaluate x* at t = 0.1875 s
x*(0.1875) = 10 + 5(0.1875)^2 + 3(0.1875)^3
x*(0.1875) = 10.18 m
You could answer this right away IF you knew the length of each wave, right ?
Well, Wavelength = (speed) / (frequency).
Speed = 3 x 10⁸ m/s (the speed of light)
and
Frequency = 90.9 x 10⁶ Hertz.
So the length of each wave is 3 x 10⁸ / 90.9 x 10⁶ meters.
To answer the question, see how many pieces you have to cut
that 1.5 km into, in order for each piece to be 1 wavelength.
It'll be
(1,500 meters) divided by (3 x 10⁸ meters/sec) / (90.9 x 10⁶ Hz)
To divide by a fraction, flip the fraction and then multiply:
(1500 meters) times (90.9 x 10⁶ Hz)/(3 x 10⁸ meters/sec)
= 454.5
Answer:
Explanation:
a.
b. R3= 1/2R2=6 ôm
R12= R1+R2=20 ôm
Rtđ=R12.R3/R12+R3= 4,62 ôm
c. U= I.Rtđ = 2.4,62=9,23 V
I1=I2= 9,23/20= 0,4615 A
I3= 2-0,4615=1,5385 A