Answer:

Explanation:
Recall the formula for acceleration:
, where
is final velocity,
is initial velocity, and
is elapsed time (change in velocity over this amount of time).
Let's look at our time vs velocity graph. At t=0 seconds, V=25 m/s. So her initial velocity is 25 m/s.
We want to find the acceleration during the first 5 seconds of motion. Well, looking at our graph, at t=5 seconds, isn't our velocity still 25 m/s? Therefore, final velocity is 25 m/s (for this period of 5 seconds).
We are only looking from t=0 seconds to t=5 seconds which is a total period of 5 seconds. Therefore, elapsed time is 5 seconds.
Substituting values in our formula, we have:

Alternative:
Without even worrying about plugging in numbers, let's think about what acceleration actually is! Acceleration is the change in velocity over a certain period of time. If we are not changing our velocity at all, we aren't accelerating! In the graph, we can see that we have a straight line from t=0 seconds to t=5 seconds, the interval we are worried about. This indicates that our velocity is staying the same! At t=0 seconds, we have a velocity of 25 m/s and that velocity stays the same until t=5 seconds. Even though we are moving, we haven't changed velocity, which means our average acceleration is zero!
Answer:

Explanation:
<u>LC Circuit</u>
It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:
= charge of the capacitor in any time 
= initial charge of the capacitor
=angular frequency of the circuit
= current through the circuit in any time 
The charge in an LC circuit is given by

The current is the derivative of the charge

We are given

It means that
![q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]](https://tex.z-dn.net/?f=q%28t_1%29%20%3D%20q_0%20%5C%2C%20cos%20%28%5Comega%20t_1%20%29%3Dq_1%5C%20.......%5Beq%201%5D)
![i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]](https://tex.z-dn.net/?f=i%28t_1%29%20%3D%20-%20%5Comega%20q_0%20%5C%2C%20sin%28%5Comega%20t_1%29%3Di_1.........%5Beq%202%5D)
From eq 1:

From eq 2:

Squaring and adding the last two equations, and knowing that


Operating

Solving for 

Now we know the value of
, we repeat the procedure of eq 1 and eq 2, but now at the second time
, and solve for 

Solving for 

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.




Finally


Answer:
1.) 274.5v
2.) 206.8v
Explanation:
1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.
The potential difference and charge across EACH capacitor will be
V = Voe
Where Vo = initial voltage
e = natural logarithm = 2.718
For the first capacitor 2.50 µF,
V = Vo × 2.718
746 = Vo × 2.718
Vo = 746/2.718
Vo = 274.5v
To calculate the charge, use the below formula.
Q = CV
Q = 2.5 × 10^-6 × 274.5
Q = 6.86 × 10^-4 C
For the second capacitor 6.80 µF
V = Voe
562 = Vo × 2.718
Vo = 562/2.718
Vo = 206.77v
The charge on it will be
Q = CV
Q = 6.8 × 10^-6 × 206.77
Q = 1.41 × 10^-3 C
B.) Using the formula V = Voe again
165 = Vo × 2.718
Vo = 165 /2.718
Vo = 60.71v
Q = C × 60.71
Q = C
The lightbulb that carries more current will be the 25W bulb.
<h3>How to explain the information?</h3>
It should be noted that an electric current simply means the stream of charged particles that move through an electrical conductor or space.
In this case, it should be noted that the power is the same for both bulbs. Therefore, the 25W bulb will have the higher resistance so that it will have lower power.
Therefore, the lightbulb that carries more current will be the 25W bulb.
Learn more about current on:
brainly.com/question/1100341
#SPJ4
The intense heat in the earth's core that causes molten rock in the mantle layer to move.