Answer : The correct option is, (D) 3600 kJ
Explanation :
Mass of octane = 75 g
Molar mass of octane = 114.23 g/mole
Enthalpy of combustion = -5500 kJ/mol
First we have to calculate the moles of octane.

Now we have to calculate the heat released in the reaction.
As, 1 mole of octane released heat = -5500 kJ
So, 0.656 mole of octane released heat = 0.656 × (-5500 kJ)
= -3608 kJ
≈ -3600 kJ
Therefore, the heat released in the reaction is 3600 kJ
<span>N = +3, H = +1 ,Cl = -1
</span><span>
</span>
Answer: The correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Explanation:
Hello! Let's solve this!
We will analyze each of the options:
A. The group number of the element provides a clue to the number of valence electrons: it is correct, since it provides the number of valence electrons.
B. An element with eight valence electrons is chemically unstable: this is not correct, since elements with eight electrons in the valence shell cannot react because they already have the last complete shell. Therefore, they are chemically stable.
C. The points must be placed one at a time on each side of the chemical symbol: it is correct, because that is the way to make the point diagram.
D. An atom is chemically stable if all the points are paired: this is correct since this verifies that the point diagram has been done well.
We conclude that the correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!!! :D
Answer:
Vertically Shrunk by a factor of 1/6
Explanation:
Parent Formula: f(x) = a(bx - c) + d
<em>a</em> - vertical shrink/stretch and x-reflections
<em>b</em> - horizontal shrink/stretch and y-reflections
<em>c</em> - horizontal movement left/right
<em>d</em> - vertical movement up/down
Since we are only modifying <em>a</em>, we are dealing with vertical shrink/stretch:
Since a < 1 (1/6 < 1), we are dealing with a vertical shrink of 1/6.
Since a > 0 (1/6 > 0), we do not have a reflection over the x-axis.