Answer:
-3
Explanation:
The oxidation state or oxidation number of an atom is the total number of electrons that an atom either gains or loses in order to form a chemical bond with another atom.
The complex anion here is [Cr(CN)6]3-.
Now, as the oxidation state of CN or cyanide ligand is -1, and if we suppose the oxidation state of Cr to be 'x', then; x - 6 = -3 (overall charge on the anion),
so x= +3. Hence the oxidation state of Chromium in this complex hexacyanochromium (III) anion comes out to be -3.
.
Answer:
Explanation:
In a chemical equation, the reactants are written on the left, and the products are written on the right. Chemical equations should contain information about the state properties of products and reactants, whether aqueous (dissolved in water — aq), solid (s), liquid (l), or gas (g). hope that helped
Answer:

Explanation:
In this case, we can start with the reaction:

If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:


Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):


The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:

Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol
= 48 g
(therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:

I hope it helps!
Answer:
jhgjghjghjghjgjhgjhgjhghjg
Explanation:
i need a crown