Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:

Answer;
The above statement is false
Explanation;
Symmetrical distribution, commonly known as symmetric distribution or normal distribution, is typically unimodal, meaning it shows only one peak in graph form.
It is a type of distribution where the left side of the distribution mirrors the right side. By definition, a symmetric distribution is never a skewed distribution.
All normal distributions are symmetric and have bell-shaped density curves with a single peak.
Answer:
0m/s
Explanation:
Since its fired at an angle, at the top there will be a split second where the velocity will be 0, as it has a parabolic shape, so the speed at the top of its path is 0
The energy of a photon is given by

where

is the Planck constant
f is the frequency of the photon
In our problem, the frequency of the light is

therefore we can use the previous equation to calculate the energy of each photon of the green light emitted by the lamp:
The question ask to find and calculate the induced current in the loop as a function time and the best answer would be that the induced current in the loop is 0.08 amperes. I hope you are satisfied with my answer and feel free to ask for more if you have clarifications and further questions