Answer:
F = [M] × [L1 T-2] = M1 L1 T-2.
Explanation:
Therefore, Force is dimensionally represented as M1 L1 T-2.
Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
Answer:
1) f= 8.6 GHz
2) t= 0.2 ms
Explanation:
1)
- Since microwaves are electromagnetic waves, they move at the same speed as the light in vacuum, i.e. 3*10⁸ m/s.
- There exists a fixed relationship between the frequency (f) , the wavelength (λ) and the propagation speed in any wave, as follows:

- Replacing by the givens, and solving for f, we get:

⇒ f = 8.6 Ghz (with two significative figures)
2)
- Assuming that the microwaves travel at a constant speed in a straight line (behaving like rays) , we can apply the definition of average velocity, as follows:
where v= c= speed of light in vacuum = 3*10⁸ m/s
d= distance between mountaintops = 52 km = 52*10³ m

⇒ t = 0.2 ms (with two significative figures)
Power = Force * Distance/ time
P = 1,250 * 2/3
P = 2,500/3
P = 833.33 Watts
So, your final answer is 833.33 Watts