As mass increases kinetic energy also increases; kinetic energy is directly proportional to mass so whatever is done to either affects the other one the same. i hope this helps :)
Answer:
A) Have more coils of wire
F) Use a more powerful battery
Answer:
Approximately
.
(Assuming that
.)
Explanation:
The mechanical energy of an object is the sum of its potential energy and its kinetic energy. It will be shown that the exact mass of this object doesn't matter. For ease of calculation, let
represent the mass of the book.
The initial potential energy of the book is
.
The book was initially at rest when it was released. Hence, its initial kinetic energy would be zero. Hence, the initial mechanical energy of the book-Earth system would be
.
When the book was about to hit the ground, its speed is
. Its kinetic energy would be:
.
The question implies that the potential energy of the book near the ground is zero. Hence, the mechanical energy of the system would be
when the book was about to hit the ground.
The amount of mechanical energy lost in this process would be equal to:
.
Divide that with the initial mechanical energy of the system to find the percentage change. Note how the mass of the book,
, was eliminated in this process.
.
Explanation:
Efficiency is a way of describing the amount of useful output a process or machine can generate as a percentage of the input required to make it go. In other words, it compares how much energy is used to do work versus how much is lost or wasted to the environment. The more efficient the machine, the less energy wasted.
For example, if a heat engine is able to turn 75 percent of the fuel it receives into motion, while 25 percent is lost as heat in the process, it would be 75 percent efficient. Out of the original 100 percent of the fuel, 75 percent was output as useful work.
the equation:
energy efficiency =useful output energy/total input energy
Explanation:
Now, looking down the solenoid tube determine what direction is the winding. If clockwise in relation to the positive wire then is the south pole, if anti-clockwise then is the north pole. So, to summarize the magnetic south pole is always clockwise in relation to the positive wire.