Answer:
The maximum range
m
Explanation:
Given,
The initial velocity of the car, u = 30 m/s
The height of the cliff, h = 50 m
Let the car drives off the cliff with a horizontal velocity of 30 m/s.
The formula for a projectile that is projected from a height h from the ground is given by the relation
m
Where,
g - acceleration due to gravity
Substituting the values in the above equation
= 132.72 m
Hence, the car lands at a distance,
m
The vector c has a magnitude of 24.6m and it is in the negative y direction. Therefore

The vector b is 41.4° up from the x-axis. Therefore
![\vec{b} = b[cos(41.4^{o}) \hat{i} + sin(41.4^{o}) \hat{j} ] =b(0.75\hat{i} + 0.6613 \hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bb%7D%20%3D%20b%5Bcos%2841.4%5E%7Bo%7D%29%20%5Chat%7Bi%7D%20%2B%20sin%2841.4%5E%7Bo%7D%29%20%5Chat%7Bj%7D%20%5D%20%3Db%280.75%5Chat%7Bi%7D%20%2B%200.6613%20%5Chat%7Bj%7D%29)
The vector a is 27.7° up from the x-axis. Therefore
![\vec{a} = a[cos(22.7^{o})\hat{i} + sin(27.7^{o})\hat{j}] = a(0.8854\hat{i} + 0.4648\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Ba%7D%20%3D%20a%5Bcos%2822.7%5E%7Bo%7D%29%5Chat%7Bi%7D%20%2B%20sin%2827.7%5E%7Bo%7D%29%5Chat%7Bj%7D%5D%20%3D%20%20a%280.8854%5Chat%7Bi%7D%20%2B%200.4648%5Chat%7Bj%7D%29)
Because

, the sum of the x and y components should be zero. Therefore,
For the x-component,
0.8854a + 0.75b = 0
or
a + 0.847b = 0 (1)
For the y-component,
0.4648a + 0.6613b - 24.6 = 0
or
a + 1.4228b = 52.926 (2)
Subtract (1) from (2).
0.5758b = 52.926
b = 91.917
a = -0.847b = -77.854
Answer:
The magnitude of vector a is -77.85 m
The magnitude of vector b is 91.92 m
Ummm what does this even mean I need a picture to help u
Atomic Motion definition: Atomic motion is the continual movement of atoms and molecules that are contained within everything in the universe.
It is subduction;) good luck on the others my man