Half the potential difference of the the1-µF
A circuit must have a capacitance of 2 F across a 1 kV potential difference for an electrical technician. He has access to a sizable number of 1F capacitors, each of which can sustain a potential difference of no more than 400 V. Please suggest a configuration that uses the fewest capacitors possible.
The 2-mu F capacitor has the following characteristics: none of the aforementioned; half the charge of the 1-mu F capacitor; twice the charge of the 1-mu F capacitor; and half the potential difference of the 1-mu F capacitor.
Q = C V, C = Capacitance of the capacitor gives the charge stored by a capacitor with an applied voltage V. V is the applied voltage.
Learn more about capacitor brainly.com/question/21851402
#SPJ4
The first thing you should know to solve this problem is the conversion of pounds to kilograms:
1lb = 0.45 Kg
We can solve this problem by a simple rule of three
1lb ---> 0.45Kg
125lb ---> x
Clearing x we have:
x = ((125) / (1)) * (0.45) = 56.25 Kg.
Answer
her mass expressed in kilograms is 56.25 Kg.
This is a concept of momentum. In equation, momentum is the product of force and distance. When a ball is thrown, its force is constant all throughout unless disturbed by an external force. Therefore, force is the constant of proportionality that relates momentum with distance. When you block a ball from a given distance, you would feel the great force on your hand. In order to reduce the force, you have to follow the direction of the force in order to minimize the impact. By doing this, you gradually decrease the momentum of the ball.
Electronegativity is the measure of the tendency of an atom to attract a bonding pair of electrons. In the periodic table, electronegativity increase across the period because the charges on the nucleus increase. The correct arrangement for the atoms given above is as follows
Flourine and Francium
Chlorine and Cesium
Nitrogen and Sodium
Phosphorus and Lithium
Nitrogen and Sulphur.