1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
3 years ago
6

22. Cindy created a solenoid by coiling a copper wire and attaching it to a battery.

Physics
2 answers:
olga55 [171]3 years ago
8 0

Answer:

its b

Explanation:

trust me

wel3 years ago
4 0
The best answer to go with is b
You might be interested in
Light emitting diode (LEDs) light bulbs have become required in recent years, but do they make financial sense? Suppose a typica
kogti [31]

Answer:

The break even cost is $0.0063825

Explanation:

Break-even cost is the amount of money, or change in value, which equates to the amount at which an asset must be sold to equal the cost of acquiring it. For easier understanding it can be thought the amount of money for which a product or service must be sold to cover the costs of manufacturing or providing it.

Wattage = W

Cost per kilo watt hour = C

Number of hours per year = H

Price per bulb/CFL = P

Discount rate = 11%

Life of bulb = 2 years

Price of bulb = $0.39

Wattage consumption of bulb per hours = 60

Life of CFL = 24 years

Price of CFL = $3.10

Wattage consumption of CFL per hour = 15

Calculate the Equated Annual Cost (EAC) of bulb

EAC = {- P - (W/1000 x H x C) x (PVIFA 11%, 2years)}/ (PVIFA 11%, 2years)

PVIFA 11%, 2years = Annuity PV Factor = [1 – {(1 + r)^(-n)}]/r, where r is the rate per period and n is the number per periods

PVIFA 11%, 2 years = [1 – {(1 + 0.11)^(-2)}]/0.11 = 1.712523 (for 2 years)

PVIFA 11%, 24 years = [1 – {(1 + 0.11)^(-24)}]/0.11 = 8.348136 (for 2 years)

<u>Calculate the EAC of bulb</u>

EAC = {- P - (W/1000 x H x C) x (PVIFA 11%, 2 years)}/ (PVIFA 11%, 2 years)

EAC = {- 0.39 - (60/1000 x H x C) x (1.712523)}/ (1.712523)

EAC = {-0.39 – (51.37570 x C)}/ 1.712523, <em>consider this equation 1</em>

<u>Calculate the EAC of CFL</u>

EAC = {- P - (W/1000 x H x C) x (PVIFA 11%, 24 years)}/ (PVIFA 11%, 24 years)

EAC = {- 3.10 - (15/1000 x 500 x C) x (8.348136)}/ (8.348136)

EAC = {-3.10 – (62.61102 x C)}/8.348137, <em>consider this equation 2</em>

<u>Equate 1 and 2 to find the amount of C</u>

{-0.39 – (51.37570 x C)}/ 1.712523 = {-3.10 – (62.61102 x C)}/8.348137

{-0.39 – (51.37570 x C) x 8.348137} = {-3.10 – (62.61102 x C) x 1.712523}

C = $0.0063825

Thus, the break- even cost per kilo – watt is $0.0063825

3 0
2 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
2 years ago
What is the frequency of an x- ray if the wavelength is 4.5 E - 10m?
AnnZ [28]
V (speed) = F (frequency) x Wavelength
If we rearrange the formula, making frequency the subject;
F (frequency) = Speed ÷ Wavelength
F = 300,000 m\s x 4.5 e -10m
F = 0.08810409956 Hz
4 0
2 years ago
Objective lenses are contained in a ____________ that can be turned to put a particular objective lens in place to be used.
Masteriza [31]

Answer:

Revolving nosepiece

Explanation:

The revolving nosepiece is one of the parts of a microscope, used for holding the objective lenses. They can be turned to put a particular objective lens in place to be used in order to vary magnification.

6 0
3 years ago
Explanation for question i &amp; ii. Thank you.
suter [353]
Do u know Chinese ?if yes I can explain to u easily
6 0
2 years ago
Other questions:
  • What is the momentum of an animal with a mass of 72kg who is moving with a velocity of 2.2 m/s
    13·1 answer
  • Unscramble these words TOFO - DNPOU TENOWN - TREEM<br> HINT: they are science words
    13·2 answers
  • An optical fiber is made of clear plastic (n = 1.50). Light travels through the fiber at angles ranging from 40° to 55°. What is
    12·1 answer
  • What does it mean if a conductor is in "electrostatic equilibrium"? a) The conductor is at rest.
    5·1 answer
  • When a 5.0-kilogram cart moving with a speed of 2.8 meters per second on a horizontal surface collides with a 2.0 kilogram cart
    14·1 answer
  • Which force keeps and object moving in a circle?​
    12·1 answer
  • Problem 1: A positively charged particle Q1 = +35 nC is held fixed at the origin. A second charge Q2 of mass m = 8.5 micrograms
    13·1 answer
  • Please help and thank you
    7·1 answer
  • un cuerpo solido de cierto material,se midio su masa y se encontro un valor de 450 gramos, al medir su volumen este fue de 2890c
    13·1 answer
  • Most towns use a water tower to store water and provide pressure in the pipes that deliver water to customers. The figure below
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!