The object which is projected upwards. The kinetic energy imparted as its launch is converted into potential energy as an object Rises until, at the peak of its motion, all the kinetic energy has been converted to additional potential energy
Answer:
c. Moon A is four times as massive as moon B
Explanation:
Let's assume the:
- mass of the object =

- mass of the moon A =

- mass of the moon B =

- distance between the center of masses of the object and moon B =

According to the given condition the object is twice as far from moon A as it is from moon B
- ∴distance between the center of masses of the object and moon B =

<u>As we know, gravitational force of attraction is given by:</u>

<em>According to the condition</em>
Force on m due to
Force on m due to



Follow stop drop and roll if the fire is in the room
Other wise exit immediately and find the nearest fire point. Then when you are out phone the fire services.
I hope this helps :)
Answer:
E = 2.7 x 10¹⁶ J
Explanation:
The release of energy associated with the mass can be calculated by Einstein's mass-energy relation, as follows:

where,
E = Energy Released = ?
m = mass of material reduced = 0.3 kg
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>E = 2.7 x 10¹⁶ J</u>