To name this Alkyne, simply count from the direction that will give the lowest starting number to appear at the beginning of the carbon triple bond.
If you were to count from the top of the chain, the position of the carbon next to the triple bond would be 4. Yet if you count from the bottom chain going left to right and above the chain, the position of the carbon next to the triple bond would be 3.
Then identify the groups that are connected off the parent chain, here we have a methyl group on carbon 2.
Thus the name would be 2 - methyl - 3 - heptyne. I believe.
Answer: 120g/mol
Explanation:
The first step we are to take is to calculate the freezing point depression of the solution.
ΔT(f) = freezing point of pure solvent - freezing point of solution
ΔT(f) = 5.48 - 3.77
ΔT(f) = 1.71°C
Next we are to calculate the molal concentration of the solution using freezing point depression
ΔT(f) = K(f) * m
m = ΔT(f)/K(f)
m = 1.71/5.12
m = 0.333 molal
Now, we calculate the molecular weight of the unknown...
m = 0.333 mol = 0.333 mol X per kg of benzene
moles of X = 0.333 mol of X per kg of benzene * 0.5kg of benzene
moles of X = 0.1665
molecular weight of X = 20g of X/0.1665
molecular weight of X = 120/mol
D. Cell membrane: surrounds a cell and allows substances to pass in and out
Answer:
Explanation:
Molar mass of KF= 39 + 19= 58g/mol
Mass of KF = 109g
Amount = mass/molar mass
Amount = 109/58
Amount = 1.9moles
Answer:
oxygen is limiting reactant
Explanation:
Given data:
Mass of phosphorus = 25.0 g
Mass of oxygen = 50.0 g
What is limiting reactant ?
Solution:
Chemical equation:
P₄ + 5O₂ → P₄O₁₀
Number of moles of P₄:
Number of moles = mass/molar mass
Number of moles = 25.0 g/ 123.89 g/mol
Number of moles = 0.20 mol
Number of moles of O₂:
Number of moles = mass/molar mass
Number of moles = 50.0 g/ 32 g/mol
Number of moles = 1.56 mol
now we will compare the moles of reactants with product:
P₄ : P₄O₁₀
1 : 1
0.20 : 0.20
O₂ : P₄O₁₀
5 : 1
1.56 : 1/5×1.56 = 0.312 mol
Less number of moles of product are formed by the oxygen thus it will act as limiting reactant.