Answer:
Both get the same results that is,
![\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given :
![\bf M=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20M%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
and initial population,
![\bf P=\left[\begin{array}{ccc}130\\300\\70\end{array}\right]](https://tex.z-dn.net/?f=%5Cbf%20P%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D)
a) - After two times, we will find in each position.
![P_2=[P].[M]^2=[P].[M].[M]](https://tex.z-dn.net/?f=P_2%3D%5BP%5D.%5BM%5D%5E2%3D%5BP%5D.%5BM%5D.%5BM%5D)
![M^2=\left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]\times \left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{1}{5}\\\frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]](https://tex.z-dn.net/?f=M%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B1%7D%7B5%7D%5C%5C%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%26%5Cfrac%7B2%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D)
![=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![\therefore\;\;\;\;\;\;\;\;\;\;\;P_2=\left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right] \times\left[\begin{array}{ccc}130\\300\\70\end{array}\right] = \left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B%5C%3BP_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D130%5C%5C300%5C%5C70%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
b) - With in migration process, 500 people are numbered. There will be after a long time,
![After\;inifinite\;period=[M]^n.[P]](https://tex.z-dn.net/?f=After%5C%3Binifinite%5C%3Bperiod%3D%5BM%5D%5En.%5BP%5D)
![Then,\;we\;get\;the\;same\;result\;if\;we\;measure [M]^n=\frac{1}{25} \left[\begin{array}{ccc}7&7&7\\8&8&8\\10&10&10\end{array}\right]](https://tex.z-dn.net/?f=Then%2C%5C%3Bwe%5C%3Bget%5C%3Bthe%5C%3Bsame%5C%3Bresult%5C%3Bif%5C%3Bwe%5C%3Bmeasure%20%5BM%5D%5En%3D%5Cfrac%7B1%7D%7B25%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%267%267%5C%5C8%268%268%5C%5C10%2610%2610%5Cend%7Barray%7D%5Cright%5D)
![=\left[\begin{array}{ccc}140\\160\\200\end{array}\right]](https://tex.z-dn.net/?f=%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D140%5C%5C160%5C%5C200%5Cend%7Barray%7D%5Cright%5D)
Answer:
C. 11 3/4
Step-by-step explanation:
3 + 3 + 2 + 2 = 10
1/4 + 3/4 + 1/4 = 1 1/4
1/2 -> 2/4
2/4 + 1 1/4 = 1 3/4
10 + 1 3/4 = 11 3/4
Linear fonction's equation : y = ax
So only in y = 2x
2 is the constant of <span>proportionality</span>
Answer:
√8 ==> 2 units, 2 units
√7 ==> √5 units, √2 units
√5 ==> 1 unit, 2 units
3 ==> >2 units, √5 units
Step-by-step explanation:
To determine which pair of legs that matches a hypotenuse length to create a right triangle, recall the Pythagorean theorem, which holds that, for a right angle triangle, the square of the hypotenuse (c²) = the sum of the square of each leg length (a² + b²)
Using c² = a² + b², let's find the hypotenuse length for each given pairs of leg.
=>√5 units, √2 units
c² = (√5)² + (√2)²
c² = 5 + 2 = 7
c = √7
The hypothenuse length that matches √5 units, √2 units is √7
=>√3 units, 4 units
c² = (√3)² + (4)²
c² = 3 + 16 = 19
c = √19
This given pair of legs doesn't match any given hypotenuse length
=>2 units, √5 units
c² = (2)² + (√5)²
c² = 4 + 5 = 9
c = √9 = 3
legs 2 units, and √5 units matche hypotenuse length of 3
=>2 units, 2 units
c² = 2² + 2² = 4 + 4
c² = 8
c = √8
Legs 2 units, and 2 units matche hypotenuse length of √8
=> 1 unit, 2 units
c² = 1² + 2² = 1 + 4
c² = 5
c = √5
Leg lengths, 1 unit and 2 units match the hypotenuse length, √5
Answer:
-5/9
Step-by-step explanation:
9(x+1)=4-2(9x+5)
Distribute
9x+9=4-18x-10
Add 4 and -10
9x+9=-6-18x
Move -18 to the left side and change sign
9x+9+18x=-6
Move 9 over and change sign
9x+18x=-6-9
Combine like terms
27x=-15
Divide both sides by 27
X=-5/9