Answer:
The correct answer has already been given (twice). I'd like to present two solutions that expand on (and explain more completely) the reasoning of the ones already given.
One is using the hypergeometric distribution, which is meant exactly for the type of problem you describe (sampling without replacement):
P(X=k)=(Kk)(N−Kn−k)(Nn)
where N is the total number of cards in the deck, K is the total number of ace cards in the deck, k is the number of ace cards you intend to select, and n is the number of cards overall that you intend to select.
P(X=2)=(42)(480)(522)
P(X=2)=61326=1221
In essence, this would give you the number of possible combinations of drawing two of the four ace cards in the deck (6, already enumerated by Ravish) over the number of possible combinations of drawing any two cards out of the 52 in the deck (1326). This is the way Ravish chose to solve the problem.
Another way is using simple probabilities and combinations:
P(X=2)=(4C1∗152)∗(3C1∗151)
P(X=2)=452∗351=1221
The chance of picking an ace for the first time (same as the chance of picking any card for the first time) is 1/52, multiplied by the number of ways you can pick one of the four aces in the deck, 4C1. This probability is multiplied by the probability of picking a card for the second time (1/51) times the number of ways to get one of the three remaining aces (3C1). This is the way Larry chose to solve the this.
Step-by-step explanation:
Answer:
Is there a way you can add an image?
Step-by-step explanation:
Answer:
$120
Step-by-step explanation:
$1,440/12= $120
Hope this helps :)
Answer:
I'm not an expert here, this is a best guess!
But I would say if there is no chance that of him incurring excess costs of less than $500, then he knows without insurance he'll end up paying at least $500, possibly more out of pocket, without the insurance.
so I would say He ends up spending the least amount out if pocket by going with option A. for $75. that's $75 out of pocket with no deductible and it covers his $500+ in excess costs....B and C would also cover the excess, but would each cost $140 or $275 out of pocket at the end of the day....
with that being said, I'd say it's worth it to buy the insurance....even if he doesn't have any excess costs, he's spent $75 dollars for the peace of mind to know he's covered either way, and if he does incur the excess costs he's spent $75 rather that $500+....Even if the excess charges are only $100, which it says there is no chance of happening, but still, then he's still saved $25 altogether. Unless I'm reading it wrong, Option A saves him the most money either way, and is worth it to buy the insurance!
Answer:
Option (1)
Step-by-step explanation:
We need a recursive formula.
The common ratio is 2.
- Eliminate options 2 and 4.
So, the answer is option 1.