Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
BaO, Barium Oxide.
Na2SO4, Sodium Sulfate.
CuO, Copper (II) Oxide.
P2O5, Diphosphorus Pentoxide.
HNO3, Nitric Acid.
CO32-, Molecular Formula.
Hope this helps. :)
True. Ions can have a positive or negative charge.
We will balance the equation in the following order: metals, amethals, carbon, hydrogen and oxygen (the most common order).
The metal present in the equation is Sr, which is already balanced (there are 1 on each side of the equation).
The amethal present in the equation is Cl. There is 2 Cl in the left side and only one in the right side. So, we will multiply the quantity of the molecule that contains Cl by 2. Doing this, we'll obtain:
Looking at the equation, we can see that it is now fully balanced. Hence, a balanced equation of the reaction is:
Pipes are made of the element Lead so the answer should be d) lead pipe