Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
Answer:
3: I can´t see the text/image, but it depend on the mass and the force applied to the ball, if both are too high, it will be harder to make a home run. (Second law)
4:It would be easier to make a home run because there is no interruption between the ball and the space the same travels. (Third law)
Explanation:
Answer:

Explanation:
We are given that
Atomic number=2
We have to find the total negative charge on the electrons in one mole of Helium.
We know that atomic number=Proton number
Proton number=Number of electrons=2
Number of electrons in Helium=2
1 mole of Helium=
atoms
We know that q=ne
Where n =Number of fundamental units
e=Charge on electron
1 e=
Using the formula

Total negative charge in 1 mole=
Hence, the total negative charge on the electrons in 1 mole of Helium=
Answer:

Explanation:
From the question we are told that:
Length 
Distance apart 
Electron Transferred 
Therefore
Total Charge
Since Charge on each electron is

Therefore


Generally the equation for Charge density is mathematically given by

Where
Area


Therefore


Generally the equation for Electric Field in the capacitor is mathematically given by



A- Radio waves, is the answer