Answer:
Honey how can i draw you cant draw here
Explanation:
I wish i can help you
Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:

n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:

hence, the frequency of the third overtone is 102 Hz
It’s 4 because a coiled springs is closely spaced then widen
Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m
D. Both exhibit the same particle-to-particle interaction.Because disturbance is propagated with the help of particles. Other than this,[ <span>light waves are electromagnetic waves. ocean waves and sound waves are mechanical waves. they are able to transfer energy. electromagnetic wave and ocean waves are transverse waves while sound waves are the longitudinal wave. they show wave properties: reflection, refraction, diffraction, interference, and plane-polarization. longitudinal waves such as sound waves cannot be plane-polarized]. The one in the box shows different examples of waves with their examples. Hope it helps.</span>