The P value for the given data set is 25127. For finding P value, we have to must find the Z value.
<h3>How to get the z scores?</h3>
If we've got a normal distribution, then we can convert it to standard normal distribution and its values will give us the z score.
The Z value is calculated as;

Z = (X - μ) / σ
Z = (4.007 - 3.6) / 0.607
Z = 0.67051
The P value for the given data set is 25127.
Learn more about z-score here:
brainly.com/question/21262765
#SPJ1
The answer is C. elastic potential energy
The answer would be 20000
The answer in standard form/scientific notation would be 2 x 10^4
(The exponent is 4 because that's how many digits after the 2 there is)
Answer:
y_red / y_blue = 1.11
Explanation:
Let's use the constructor equation to find the image for each wavelength
1 /f = 1 /o + 1 /i
Where f is the focal length, or the distance to the object and i the distance to the image
Red light
1 / i = 1 / f - 1 / o
1 / i_red = 1 / f_red - 1 / o
1 / i_red = 1 / 19.57 - 1/30
1 / i_red = 1,776 10-2
i_red = 56.29 cm
Blue light
1 / i_blue = 1 / f_blue - 1 / o
1 / i_blue = 1 / 18.87 - 1/30
1 / i_blue = 1,966 10-2
i_blue = 50.863 cm
Now let's use the magnification ratio
m = y ’/ h = - i / o
y ’= - h i / o
Red Light
y_red ’= - 5 56.29 / 30
y_red ’= - 9.3816 cm
Light blue
y_blue ’= 5 50,863 / 30
y_blue ’= - 8.47716 cm
The ratio of the height of the two images is
y_red ’/ y_blue’ = 9.3816 / 8.47716
y_red / y_blue = 1,107
y_red / y_blue = 1.11
'H' = height at any time
'T' = time after both actions
'G' = acceleration of gravity
'S' = speed at the beginning of time
Let's call 'up' the positive direction.
Let's assume that the tossed stone is tossed from the ground, not from the tower.
For the stone dropped from the 50m tower:
H = +50 - (1/2) G T²
For the stone tossed upward from the ground:
H = +20T - (1/2) G T²
When the stones' paths cross, their <em>H</em>eights are equal.
50 - (1/2) G T² = 20T - (1/2) G T²
Wow ! Look at that ! Add (1/2) G T² to each side of that equation,
and all we have left is:
50 = 20T Isn't that incredible ? ! ?
Divide each side by 20 :
<u>2.5 = T</u>
The stones meet in the air 2.5 seconds after the drop/toss.
I want to see something:
What is their height, and what is the tossed stone doing, when they meet ?
Their height is +50 - (1/2) G T² = 19.375 meters
The speed of the tossed stone is +20 - (1/2) G T = +7.75 m/s ... still moving up.
I wanted to see whether the tossed stone had reached the peak of the toss,
and was falling when the dropped stone overtook it. The answer is no ... the
dropped stone was still moving up at 7.75 m/s when it met the dropped one.