Answer: D.) 39,200 J
Via the equation of potential energy PE = mgh where m is mass, g is the average gravity on earth and h is the height. In this case m = 400 kg, g = 9.8, h = 10 m thus:

P.E.= 39,200 Joules
Forces are needed to lift, turn, move, open, close, push, pull, and so on. When you throw a ball, you are using force to make the ball move through the air. More than one force can act on an object at the same time.
Answer:
Explanation:
To stop a ball with high momentum in a small-time imparts a high amount of impact on hands. This is the reason for the stinging of hands.
The momentum of the ball is due to the mass and velocity. To prevent stinging in the hand one needs to lower his hands to increase the time of contact. In this way, the momentum transfer to the hands will be lesser.
The kinetic energy (KE) is 250 J and the gravitational potential energy (GPE) is 392 J
Answer:
State A = piece of metal; State B = air
Explanation:
For the three main states of matter here's how it breaks down.
Solid - Cannot be compressed and retains its shape
Liquid - Cannot be compressed and does not retain its shape
Gas - Compressible and does not retain its shape.
Knowing this State A has to be solid. Only one of the options has A as a solid, so that's the answer. Worth knowing state B is a gas though, only one compressible, just like solid is the only one that retains its shape.