A long string carries the wave; a segment of the string measuring 6.00 meters in length and weighing 180 grams contains four full wavelengths. The string vibrates sinusoidally at a 50.0 Hz frequency with a 15.0 cm peak-to-valley displacement. The vertical distance between the farthest positive and negative positions is known as the "peak-to-valley" distance. The function that describes this wave traveling in the positive x direction is
.

If phase constant is
then
equation is ![$y=7.5 \times 10^{-2} \sin \left[100 \pi t-\frac{4 \pi}{3} x+\phi\right]$](https://tex.z-dn.net/?f=%24y%3D7.5%20%5Ctimes%2010%5E%7B-2%7D%20%5Csin%20%5Cleft%5B100%20%5Cpi%20t-%5Cfrac%7B4%20%5Cpi%7D%7B3%7D%20x%2B%5Cphi%5Cright%5D%24)
∴ equation is 
- A wave is a disturbance that moves from one location to another, carrying energy but not always matter.
- The square of the equation provides a probability density map of the locations where an electron has a specific statistical likelihood to be at any given moment in time. Wave functions have no direct physical meaning.
To know more about Wave functions visit : brainly.com/question/3639648
#SPJ4
Answer:
(a) Final speed of block = 3.2896 m/s
(b) 6.7350 m/s is the speed of the bullet-block center of mass?
Explanation:
Given that:
Mass of bullet (m₁) = 6.20 g
Initial Speed of bullet (u₁) = 929 m/s
Final speed of bullet (v₁) = 478 m/s
Mass of wooden block (m₂) = 850g
Initial speed of block initial (u₂) = 0 m/s
Final speed of block (v₂) = ?
<u>By the law of conservation of momentum as:</u>
<u>m₁×u₁ + m₂×u₂ = m₁×v₁ + m₂×v₂</u>
6.20×929 + 850×0 = 6.20×478 + 850×v₂
Solving for v₂, we get:
<u>v₂ = 3.2896 m/s</u>
Let the V be the speed of the bullet-block center of mass. So,
V = [m₁* u₁]/[m₁ + m₂] (p before collision = p after collision)
= [6.2 *929]/[5.2+850]
<u>V = 6.7350 m/s
</u>
It's called condensation. That is what that wetness on the outside of the cup is.
Answer:
Explanation:
decrease in energy of the transferred charge
= Voltage x charge
= 2.86 x 10⁹ x 23.1
= 66.067 x 10⁹ J
the final speed of the automobile be V
1/2 m v² = 66.067 x 10⁹
v² = 66.067 x 10⁹ x 2 / 1519
= .08698 x10⁹
= 87 x 10⁶
v = 9.32 x 10³ m / s
B) The amount of work done