Answer:
80.7 L
Explanation:
PV = nRT
P = 1520 mmHg = 2 atm
n = 5 mol
R = 0.08206 (L * atm)/(mol * K)
T = 393.15 K
2 (V) = 5 (0.08206) (393.15)
V ≈ 80.7 L
<span>This is due to the fact that the air pressure in that certain section of Earth’s atmosphere decreased. As density of gas particles decreases as air pressure decreases. Therefore, density of gas particles and air pressure have a direct relationship. An increase in air pressure would then effect to an increase in gas particles. </span>
Answer:
B) exothermic.
Explanation:
Hello!
In this case, we need to keep in mind that exothermic reactions release heat, so they increase the temperature as the final energy is less than the initial energy; in contrast, endothermic reactions absorb heat, so they decrease the temperature as the final energy is greater than the initial energy.
In such a way, when a dissolution process shows off a negative enthalpy of dissolution, we infer it is an exothermic process due to the aforementioned; therefore, the answer is:
B) exothermic
.
Best regards!
Um, I think it’s: k is potassium and F is fluorine so potassium Fluoride
Answer:
a) rate law1 = k[NO2]²
b) rate law2 = k[NO][O3]
Explanation:
NO2(g) + CO(g) → NO(g) + CO2(g)
NO(g) + O3(g) → NO2(g) + O2(g)
When [NO2] in reaction 1 is doubled, the reaction quadruples
Rxn is second order.
rate law1= [NO2]^a [CO]^b
rate law1= [NO2]² [CO]^0
rate law1 = k[NO2]²
When [NO] in reaction 2 is doubled, the rate doubles.
Rxn is first order
The ratio is 1:1
this makes the rate law2 = k[NO][O3]