Answer:
₁₁A
Explanation:
Atomic radius
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons.
This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases.
So in given elements consider A₁₁, B₁₂, C₁₃ ans D₁₇ as sodium, magnesium, aluminium and chlorine. This is the third period and as we move form sodium to chlorine atomic radius decreases. That's why sodium has greater size.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased
The oxidation state of the elements in the compounds are:
CoH₂:
FeBr₃:
<h3>What is the oxidation states of the elements in the given compounds?</h3>
The oxidation states of the elements in each of the given compounds is determined as follows:
Cobalt dihydride, CoH₂
Co = +2
H = -1
Iron (iii) bromide, FeBr₃
Fe = +3
Br = -1
In conclusion, the oxidation state of the elements are charges they have in the compound.
Learn more about oxidation state at: brainly.com/question/27239694
#SPJ1
it decreases the density of the object the air bubbles take up space. it increases the volume of the object slightly but the objects weight remains the same, hence the objects density decreases
Answer:
A radical is a group of atoms behaving as a unit in a number of compounds where as an element is a species of atoms having the same number of protons in their atomic nuclei.
Explanation: