Is that a test? I can’t help if it is
Question:
<em>For an exothermic reaction at equilibrium, how will increasing the temperature affect Keq?</em>
Answer:
<em>The reaction will proceed towards the liquid phase. Heat is on the reactant side of the equation. Lowering temperature will shift equilibrium left, creating more liquid water. A reaction that is exothermic releases heat, while an endothermic reaction absorbs heat.</em>
<em>If you increase the temperature, the position of equilibrium will move in such a way as to reduce the temperature again. It will do that by favouring the reaction which absorbs heat. In the equilibrium, that will be the back reaction because the forward reaction is exothermic.</em>
Hope this helps, have a good day. c;
Answer:chlorofluorocarbons (CFCs)
halon.
carbon tetrachloride (CCl4)
methyl chloroform (CH3CCl3)
hydrobromofluorocarbons (HBFCs)
hydrochlorofluorocarbons (HCFCs)
methyl bromide (CH3Br)
bromochloromethane (CH2BrCl)
Explanation:
BRAINLIEST pls
Answer:
λ = 1×10²⁶m
Explanation:
Given data:
Wavelength of radiation = ?
Frequency of radiation = 3×10⁻¹⁸Hz
Solution:
Formula:
c = f × λ
c = speed of wave = 3×10⁸ m/s
by putting values,
3×10⁸ m/s = 3×10⁻¹⁸Hz × λ
λ = 3×10⁸ m/s / 3×10⁻¹⁸s⁻¹
λ = 1×10²⁶m
Answer: they will meet and make a biger wave then seperat
Explanation: When two or more waves meet, they interact with each other. The interaction of waves with other waves is called wave interference. Wave interference may occur when two waves that are traveling in opposite directions meet. The two waves pass through each other, and this affects their amplitude.