Answer:
The rate of the reaction will increase by a factor of 9.
Explanation:
Hello,
In this case, considering the given second-order reaction, whose rate law results:
![r=k[A] [B]^2](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%20%5BB%5D%5E2)
We easily infer that at constant concentration of A but tripling the concentration of B, we are going to obtain the following increasing factor while holding the remaining variables constant:
![Increase\ factor=\frac{r_{final}}{r_{initial}} =\frac{k[A][3*B]^2}{k[A][B]^2} =\frac{3^2}{1} \\Increase\ factor=9](https://tex.z-dn.net/?f=Increase%5C%20factor%3D%5Cfrac%7Br_%7Bfinal%7D%7D%7Br_%7Binitial%7D%7D%20%3D%5Cfrac%7Bk%5BA%5D%5B3%2AB%5D%5E2%7D%7Bk%5BA%5D%5BB%5D%5E2%7D%20%3D%5Cfrac%7B3%5E2%7D%7B1%7D%20%5C%5CIncrease%5C%20factor%3D9)
Best regards.
Answer:
B. a H+ ion is the answer dear.
Explanation:
ㅗㅐㅔㄷ ㅅㅗㅑㄴ ㅗㄷㅣㅔ ㅛㅐㅕ.
The sun's gravity pulls the planet toward the sun, which changes the straight line of direction into a curve. This keeps the planet moving in an orbit around the sun. Because of the sun's gravitational pull, all the planets in our solar system orbit around it.
Answer:
A solution is made by dissolving 4.87 g of potassium nitrate in water to a final volume of 86.4 mL solution. The weight/weight % or percent by mass of the solute is :
<u>2.67%</u>
Explanation:
Note : Look at the density of potassium nitrate in water if given in the question.
<u><em>You are calculating </em></u><u><em>weight /Volume</em></u><u><em> not weight/weight % or percent by mass of the solute</em></u>
Here the <u>weight/weight % or percent by mass</u> of the solute is asked : So first convert the<u> VOLUME OF SOLUTION into MASS</u>
Density of potassium nitrate in water KNO3 = 2.11 g/mL

Density = 2.11 g/mL
Volume of solution = 86.4 mL



Mass of Solute = 4.87 g
Mass of Solution = 183.2 g
w/w% of the solute =


w/w%=2.67%
The correct definition of density is the degree of compactness of a substance.