Given the wavelength of the yellow light (700 nm. in this case) we can find the frequency
<span>by dividing the speed of light c by the wavelength w, that is: f = c/w and we know that </span>
<span>c is equal to 2.998 * 10**8 meters per second. </span>
<span>So the frequency f = (2.998 * 10**8) / (7.0 * 10**-7) = 4.283 * 10**14 cycles per sec. </span>
<span>(or Hz.) Since the threshold frequency of Cs is 9.39 * 10**14 Hz, the red light doesn't </span>
<span>have a high enough frequency (or energy) to cause electron emission. </span>
<span>Hope this answers your question.</span>
I’m not sure what kind of answer you’re looking for, but if you’re supposed to translate it into a sentence it would be two moles of sodium bicarbonate(baking soda) decompose unto one mole of sodium carbonate(soda ash) plus one mole of water and one mole of carbon monoxide gas
Answer:
Soil is a mix of inorganic minerals, water, air, organic matter from dead and decaying plants and animals, and an incredible array of living organisms, ranging in size from microscopic bacteria and fungi to earthworms, moles, and shrews.
Explanation:
hope this helps.
please give brainliest...
Answer:
a) K2[Ni(CN)4]
b) Na3[Ru(NH3)2(CO3)2]
c) Pt(NH3)2Cl2
Explanation:
Coordination compounds are named in accordance with IUPAC nomenclature.
According to this nomenclature, negative ligands end with the suffix ''ato'' while neutral ligands have no special ending.
The ions written outside the coordination sphere are counter ions. Given the names of the coordination compounds as written in the question, their formulas are provided above.
Answer:
The correct answer is option C
Explanation:
According to Heisenberg's principle "At the instant of time when the position is determined, that is, at the instant when the photon is scattered by the electron, the electron undergoes a discontinuous change in momentum. This change is the greater the smaller the wavelength of the light employed, i.e., the more exact the determination of the position. At the instant at which the position of the electron is known, its momentum therefore can be known only up to magnitudes which correspond to that discontinuous change; thus, the more precisely the position is determined, the less precisely the momentum is known".
Hence, this principle made scientists to realize that electrons could not be located in defined orbits which a contradictory of Bohr's model.