Answer:
0.5 mole of CO₂.
Explanation:
We'll begin by calculating the number of mole in 42 g of baking soda (NaHCO₃). This can be obtained as follow:
Mass of NaHCO₃ = 42 g
Molar mass of NaHCO₃ = 23 + 1 + 12 + (16×3)
= 23 + 1 + 12 + 48
= 84 g/mol
Mole of NaHCO₃ =?
Mole = mass / molar mass
Mole of NaHCO₃ = 42/84
Mole of NaHCO₃ = 0.5 mole
Next, balanced equation for the reaction. This is given below:
NaHCO₃ + HC₂H₃O₂ → NaC₂H₃O₂ + H₂O + CO₂
From the balanced equation above,
1 mole of NaHCO₃ reacted to produce 1 mole of CO₂
Finally, we shall determine the number of mole of CO₂ produced by the reaction of 42 g (i.e 0.5 mole) of NaHCO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of NaHCO₃ reacted to produce 1 mole of CO₂.
Therefore, 0.5 mole of NaHCO₃ will also react to produce 0.5 mole of CO₂.
Thus, 0.5 mole of CO₂ was obtained from the reaction.
Answer:
What happens when it is squeezed is that its volume increases, the pressure of the material increases.
Explanation:
This is due to the fact that the elastic modulus of the sponge is high and withstands broad forces without deforming its structure, since the force is made within the proportional limit of its particles without modifying or permanently deforming them, that is why when stopping doing pressure or force on it its shape returns to being the original, this also happens due to the phenomenon of resilience
This problem is providing the heating curve of ethanol showing relevant data such as the initial and final temperature, melting and boiling points, enthalpies of fusion and vaporization and specific heat of solid, liquid and gaseous ethanol, so that the overall heat is required and found to be 1.758 kJ according to:
<h3>Heating curves:</h3>
In chemistry, we widely use heating curves in order to figure out the required heat to take a substance from a temperature to another. This process may involve sensible heat and latent heat, when increasing or decreasing the temperature and changing the phase, respectively.
Thus, since ethanol starts off solid and end up being a vapor, we will find five types of heat, three of them related to the heating-up of ethanol, firstly solid, next liquid and then vapor, and the other two to its fusion and vaporization as shown below:

Hence, we begin by calculating each heat as follows, considering 1 g of ethanol is equivalent to 0.0217 mol:
![Q_1=0.0217mol*111.5\frac{J}{mol*\°C}[(-114.1\°C)-(-200\°C)] *\frac{1kJ}{1000J} =0.208kJ\\ \\ Q_2=0.0217mol*4.9\frac{kJ}{mol} =0.106kJ\\ \\ Q_3=0.0217mol*112.4\frac{J}{mol*\°C}[(78.4\°C)-(-114.1\°C)] *\frac{1kJ}{1000J} =0.470kJ\\ \\ Q_4=0.0217mol*38.6\frac{kJ}{mol} =0.838kJ\\ \\ Q_5=0.0217mol*87.5\frac{J}{mol*\°C}[(150\°C)-(78.4\°C)] *\frac{1kJ}{1000J} =0.136kJ](https://tex.z-dn.net/?f=Q_1%3D0.0217mol%2A111.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28-114.1%5C%C2%B0C%29-%28-200%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.208kJ%5C%5C%0A%5C%5C%0AQ_2%3D0.0217mol%2A4.9%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.106kJ%5C%5C%0A%5C%5C%0AQ_3%3D0.0217mol%2A112.4%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%2878.4%5C%C2%B0C%29-%28-114.1%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.470kJ%5C%5C%0A%5C%5C%0AQ_4%3D0.0217mol%2A38.6%5Cfrac%7BkJ%7D%7Bmol%7D%20%3D0.838kJ%5C%5C%0A%5C%5C%0AQ_5%3D0.0217mol%2A87.5%5Cfrac%7BJ%7D%7Bmol%2A%5C%C2%B0C%7D%5B%28150%5C%C2%B0C%29-%2878.4%5C%C2%B0C%29%5D%20%2A%5Cfrac%7B1kJ%7D%7B1000J%7D%20%3D0.136kJ)
Finally, we add them up to get the result:

Learn more about heating curves: brainly.com/question/10481356
<span>Elements are classified as metals, nonmetals, or metalloids according to their PHYSICAL PROPERTIES</span>