Answer:
Let the mass of the book be "m", acceleration due to gravity be "g", velocity be "v" and height be "h".
Now if we are holding a book at a certain height (h), <em><u>the potential energy will be maximum which is equal to mass× acceleration due to gravity× height (= mgh)</u>.</em>
(Remember: kinetic energy =0)
Now we consider that the book is dropped, in this case a force will act downward towards the centre of the earth, <em><u>Force= mass× acceleration due to gravity (F=mg)</u></em>. It is equal to the weight of the book.
While the book is falling, the potential energy stored in the book converts into kinetic energy and strikes the floor with <em><u>the maximum kinetic energy= (1/2)×mass×velocity² (=1/2mv²)</u>.</em>
(Remember: kinetic energy=0)
Due to this process the whole energy is conserved.
As the potential energy decreases kinetic energy increases.
Answer:
Explanation:
Initial velocity u = V₀ in upward direction so it will be negative
u = - V₀
Displacement s = H . It is downwards so it will be positive
Acceleration = g ( positive as it is also downwards )
Using the formula
v² = u² + 2 g s
v² = (- V₀ )² + 2 g H
= V₀² + 2 g H .
v = √ ( V₀² + 2 g H )
Answer:
it makes the object speed increase, decrease and change the direction of the object.
Hope it helps!
After traveling for 6.0 seconds, a runner reaches 10m/s. What is the runner's acceleration? Answer: 1.67 m/s2
Answer:
the answer is d
Explanation:
you get exhausted at the middle because it is steep.