Answer:
A car accelerates from rest, and travels 400 m in 3.5 seconds. If
the net force on the car is 12,000 N what is the mass of the car? bzgs dvd d dv dvdvd dhd dbvd
Explanation:
shd dhd bdvd dhdbduhdbdhdbbdceudd f
Answer:
the correct one is D,
Ultraviolet, x-ray, gamma ray
Explanation:
Electromagnetism radiation are waves of energy that is expressed by the Planck relationship
E = h f
where h is the plank constant and f the frequency of the radiation.
Also the speed of light is
c = λ f
we substitute
E = h c /λ
therefore to damage the cells of the body radiation of appreciable energy is needed
microwave radiation has an energy of 10⁻⁵ eV
infrared radiation E = 10⁻² eV
visible radiation E = 1 to 3 eV
radiation Uv E = 3 to 6 eV
X-ray E = 10 eV
gamma rays E = 10 5 eV
therefore we see that the high energy radiation is gamma rays, x-rays and ultraviolet light.
When checking the answers, the correct one is D
Answer: The answer is B. Add more solute (took test)
Explanation:
Answer:
It is called so because it is applicable on all bodies having mass, and the bodies will be governed by the same law, that is newton's law of gravitation. Thus, as it is applicable universally, it is called as universal law.
-- The speed of light in air is very close to 3 x 10⁸ m/s.
Whatever the actual number is, it's equivalent to roughly
7 times around the Earth in 1 second. So for this kind of
problem, you can assume that we see things at the same time
that they happen; don't bother worrying about how long it takes
for the light to reach you.
-- For sound, it's a different story. Sound in air only travels at
about 340 m/s. It takes sound almost 5 seconds to go 1 mile.
-- Now, the lightning and thunder happen at the same time.
The light travels to you at the speed of light, so you see the
lightning pretty much when it happens. But the sound of the
thunder comes poking along at 340 m/s, and arrives AFTER
the sight of the lightning.
The length of time between the sight and the sound is about
99.9999% the result of the time it takes the sound to reach you.
If the thunder arrived at you 3 seconds after the light did, then
the sound traveled
(340 m/s) x (3 s) = 1,020 meters .
(about 0.63 of a mile)
(If you're worried about ignoring the time it takes
for the light to reach you ...
It takes light 0.0000034 second to cover the same 1,020 meters,
so including it in the calculation would not change the answer.)