I think this is the solution:
1: U-1, F,-4
2: Na-6, Mo-1, O-4
3: Bi-1, O-1, C-1, I-1
4: In-9, N-1
5: N-2, H-4, S-1, C-1
6: Ge- 15, N-4
7: N-1, H-4, C-1, I-1, O-3
8: H-7, F-1
9: N-1, O-5, H-1, S-1
10: H-8
11: Nb-1, O-1, C-1, I-3
12: C-3, F-3, S-1, O-3, H-1
13: Ag-1, C-1, N-1, O-1
14: Pb-6, H-1, As-1, O-4
Answer:
a. 12 m/s² down
Explanation:
Acceleration has units of length per time squared. Acceleration is a vector, so it also has a direction.
Answer:
Q1: 3.2km
Q2: 4.8K
Explanation:
Q1:
So db is the distance of bird, and dr is the distance of runner
db = 2vr and the distance of bird is going to be 2 times greater than the runner.
formulas: db = 2vr & db = 2dr
- db = 2dr
- L + (L - x) = 2x
- 2L - x = 2x
- 2L = 3x
- x =
L
Insert it in x =
L
(2.4km) = 1.6km
Now we use formula db = 2dr
- db = 2L - x
- db = 2(2.4km) - 1.6km
- <u>db = 3.2km</u>
Q2:
Formulas: Vr = L /Δt & Vb = db/Δt
- Vr = L/ Δt ⇒ Δt =



(Km cancel each other)
- Vb = db/Δt ⇒ db = VbΔt
- 13.6km/hr

- <u>4.8km</u>
(hr cancel each other)
Hope it helps you :)
Speed = Distance ÷ Time so divide .5 km by .1h. .5 km÷.1h=5 km/h, so the answer is B. 5km/h.
Hello!
Using Hooke's law, F spring=k delta x, find the distance a spring with an elastic constant of 4 N/cm will stretch if a 2 newton force is applied to it.
Data:
Hooke represented mathematically his theory with the equation:
F = K * Δx
On what:
F (elastic force) = 2 N
K (elastic constant) = 4 N/cm
Δx (deformation or elongation of the elastic medium or distance from a spring) = ?
Solving:




simplify by 2


Answer:
B.) 1/2 cm
_______________________
I Hope this helps, greetings ... Dexteright02! =)