3.5 meters per second second is the acceleration because we know that acceleration is change in velocity over time and the change is velocity here is 35 and the time is 10 so we can simply divide 35 by 10 which is 3.5 m/s squared
Responder:
Velocidad = 41.5m / s
Espacio recorrida = 352.5 metros
Explicación:
Dado lo siguiente:
Velocidad inicial (u) = 19.8 km / h
Aceleración (a) = 2.4m / s ^ 2
Tiempo de viaje (t) = 15 s
A.) velocidad después de 15 s
Velocidad inicial = (19.8 × 1000) m / 3600s Velocidad inicial = 19800m / 3600 = 5.5m / s
Usando la ecuación: v = u + at, donde v es la velocidad
v = 5.5 + 2.4 (15)
v = 5.5 + 36
v = 41.5m / s
Espacio recorrida:
v ^ 2 = u ^ 2 + 2aS; donde S es la distancia recorrida
41.5 ^ 2 = 5.5 ^ 2 + 2 × (2.4) × S
1722.25 = 30.25 + 4.8S
1722.25 - 30.25 = 4.8S
1692 = 4.8S S = 1692 / 4.8 S = 352.5m
The result is although the wire's resistivity doesn't change, its resistance does.
Considering the formula for a material's resistance:
R=pL/A
R is directly proportional to L and inversely proportional to A, as can be seen. Be aware that "rho" is a material-specific and intensive attribute (meaning this value will not change if the material is only physically altered). Remember that A = This implies that the relationship between R and the square of r is inverse. When the wire is stretched, the impacts on length are less noticeable than the effects on r. Therefore the wire's resistance increases, but its resistivity stays the same.
Learn more about resistance here:
brainly.com/question/20708652
#SPJ4
Answer:
Option A
Explanation:
Your answer is the first option or "C/kg." C/kg is a ratio for specific charge. C for the charge of the electron, kg for the mass of the electron. To find the specific charge we divide the two, which usually involves scientific notations and simplifying.
<u>Example:</u>


Hope this helps.