Answer:
114.86%
Explanation:
In both cases, there is a vertical force equal to the sprinter's weight:
Fy = mg
When running in a circle, there is an additional centripetal force:
Fx = mv²/r
The net force is found with Pythagorean theorem:
F² = Fx² + Fy²
F² = (mv²/r)² + (mg)²
F² = m² ((v²/r)² + g²)
F = m √((v²/r)² + g²)
Compared to just the vertical force:
F / Fy
m √((v²/r)² + g²) / mg
√((v²/r)² + g²) / g
Given v = 12 m/s, r = 26 m, and g = 9.8 m/s²:
√((12²/26)² + 9.8²) / 9.8
1.1486
The force is about 114.86% greater (round as needed).
Answer:
a) Yes
b) 7 rad/s
c) 0.01034 J
Explanation:
a)
Yes the angular momentum of the block is conserved since the net torque on the block is zero.
b)
m = mass of the block = 0.0250 kg
w₀ = initial angular speed before puling the cord = 1.75 rad/s
r₀ = initial radius before puling the cord = 0.3 m
w = final angular speed after puling the cord = ?
r = final radius after puling the cord = 0.15 m
Using conservation of angular momentum
m r₀² w₀ = m r² w
r₀² w₀ = r² w
(0.3)² (1.75) = (0.15)² w
w = 7 rad/s
c)
Change in kinetic energy is given as
ΔKE = (0.5) (m r² w² - m r₀² w₀²)
ΔKE = (0.5) ((0.025) (0.15)² (7)² - (0.025) (0.3)² (1.75)²)
ΔKE = 0.01034 J
Answer:
Ocean-Ocean Convergence
As the subducting plate is pushed deeper into the mantle, it melts. The magma this creates rises and erupts. This forms a line of volcanoes, known as an island arc
Answer:
The centripetal acceleration of an object moving in a uniform circular path is given by the following equation:
Where:
is the velocity
is the radius of the circle