1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weeeeeb [17]
3 years ago
9

Which expression is not an integer? A) -15 B) 6/14 C) 0 D) 12/6

Mathematics
2 answers:
Minchanka [31]3 years ago
7 0
I believe it is C because I think 0 is actually not an integer
vladimir1956 [14]3 years ago
5 0

Answer : The Expression which is not an integer is  \frac{6}{14}

Reason : Because,\; \frac{6}{14} = 0.42857\;which\;is\;not\;an\;integer

Option - A : -15 is an Integer

Option - C : 0 is an Integer

Option - D : \frac{12}{6} = 2\;which\;is\;an\;integer

So, Option B is the Answer

You might be interested in
Two soccer teams play 8 games in their season. The number of goals each team scored per game is listed below: Team X: 11, 3, 0,
Gre4nikov [31]

Answer:

C. Team Y’s scores have a lower mean value.

Step-by-step explanation:

We are given that Two soccer teams play 8 games in their season. The number of goals each team scored per game is listed below:

Team X: 11, 3, 0, 0, 2, 0, 6, 4

Team Y: 4, 2, 0, 3, 2, 1, 6, 4

Firstly, we will calculate the mean, median, range and inter-quartile range for Team X;

Mean of Team X data is given by the following formula;

        Mean, \bar X =  \frac{\sum X}{n}

                       =  \frac{11+ 3+ 0+ 0+ 2+ 0+ 6+ 4}{8}  =  \frac{26}{8}  = 3.25

So, the mean of Team X's scores is 3.25.

Now, for calculating the median; we have to arrange the data in ascending order and then observe that the number of observations (n) in the data is even or odd.

Team X: 0, 0, 0, 2, 3, 4, 6, 11

  • If n is odd, then the formula for calculating median is given by;

                         Median  =  (\frac{n+1}{2} )^{th} \text{ obs.}

  • If n is even, then the formula for calculating median is given by;

                         Median  =  \frac{(\frac{n}{2})^{th} \text{ obs.} +(\frac{n}{2}+1)^{th} \text{ obs.}  }{2}

Here, the number of observations is even, i.e. n = 8.

So, Median =  \frac{(\frac{n}{2})^{th} \text{ obs.} +(\frac{n}{2}+1)^{th} \text{ obs.}  }{2}

                   =  \frac{(\frac{8}{2})^{th} \text{ obs.} +(\frac{8}{2}+1)^{th} \text{ obs.}  }{2}

                   =  \frac{(4)^{th} \text{ obs.} +(5)^{th} \text{ obs.}  }{2}

                   =  \frac{2+3}{2}  = 2.5

So, the median of Team X's score is 2.5.

Now, the range is calculated as the difference between the highest and the lowest value in our data.

               Range = Highest value - Lowest value

                           = 11 - 0 = 11

So, the range of Team X's score is 11.

Now, the inter-quartile range of the data is given by;

        Inter-quartile range = Q_3-Q_1

Q_1=(\frac{n+1}{4} )^{th} \text{ obs.}

     =  (\frac{8+1}{4} )^{th} \text{ obs.}

     =  (2.25 )^{th} \text{ obs.}

Q_1 = 2^{nd} \text{ obs.} + 0.25[ 3^{rd} \text{ obs.} -2^{nd} \text{ obs.} ]

     =  0 + 0.25[0 - 0] = 0

Q_3=3(\frac{n+1}{4} )^{th} \text{ obs.}

     =  3(\frac{8+1}{4} )^{th} \text{ obs.}

     =  (6.75 )^{th} \text{ obs.}

Q_3 = 6^{th} \text{ obs.} + 0.75[ 7^{th} \text{ obs.} -6^{th} \text{ obs.} ]

     =  4 + 0.75[6 - 4] = 5.5

So, the inter-quartile range of Team X's score is (5.5 - 0) = 5.5.

<u>Now, we will calculate the mean, median, range and inter-quartile range for Team Y;</u>

Mean of Team Y data is given by the following formula;

        Mean, \bar Y =  \frac{\sum Y}{n}

                       =  \frac{4+ 2+ 0+ 3+ 2+ 1+ 6+ 4}{8}  =  \frac{22}{8}  = 2.75

So, the mean of Team Y's scores is 2.75.

Now, for calculating the median; we have to arrange the data in ascending order and then observe that the number of observations (n) in the data is even or odd.

Team Y: 0, 1, 2, 2, 3, 4, 4, 6

  • If n is odd, then the formula for calculating median is given by;

                         Median  =  (\frac{n+1}{2} )^{th} \text{ obs.}

  • If n is even, then the formula for calculating median is given by;

                         Median  =  \frac{(\frac{n}{2})^{th} \text{ obs.} +(\frac{n}{2}+1)^{th} \text{ obs.}  }{2}

Here, the number of observations is even, i.e. n = 8.

So, Median =  \frac{(\frac{n}{2})^{th} \text{ obs.} +(\frac{n}{2}+1)^{th} \text{ obs.}  }{2}

                   =  \frac{(\frac{8}{2})^{th} \text{ obs.} +(\frac{8}{2}+1)^{th} \text{ obs.}  }{2}

                   =  \frac{(4)^{th} \text{ obs.} +(5)^{th} \text{ obs.}  }{2}

                   =  \frac{2+3}{2}  = 2.5

So, the median of Team Y's score is 2.5.

Now, the range is calculated as the difference between the highest and the lowest value in our data.

               Range = Highest value - Lowest value

                           = 6 - 0 = 6

So, the range of Team Y's score is 6.

Now, the inter-quartile range of the data is given by;

        Inter-quartile range = Q_3-Q_1

Q_1=(\frac{n+1}{4} )^{th} \text{ obs.}

     =  (\frac{8+1}{4} )^{th} \text{ obs.}

     =  (2.25 )^{th} \text{ obs.}

Q_1 = 2^{nd} \text{ obs.} + 0.25[ 3^{rd} \text{ obs.} -2^{nd} \text{ obs.} ]

     =  1 + 0.25[2 - 1] = 1.25

Q_3=3(\frac{n+1}{4} )^{th} \text{ obs.}

     =  3(\frac{8+1}{4} )^{th} \text{ obs.}

     =  (6.75 )^{th} \text{ obs.}

Q_3 = 6^{th} \text{ obs.} + 0.75[ 7^{th} \text{ obs.} -6^{th} \text{ obs.} ]

     =  4 + 0.75[4 - 4] = 4

So, the inter-quartile range of Team Y's score is (4 - 1.25) = 2.75.

Hence, the correct statement is:

C. Team Y’s scores have a lower mean value.

4 0
3 years ago
Can someone help me with this
joja [24]

Answer:

29

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
erik drove 439.92 miles on 15.6 gallons of gas. To the nearest hundredth, how many miles could he drive on 39.7 gallons of gas?
Thepotemich [5.8K]
In the question it is already given that Eric drove for 439.92 miles on 15.6 gallons. It is required to find the distance traveled on 39.7 gallons of gas. Also we have to find the answer to the nearest hundredth.
Then,
In 15.6 gallons Eric can drive for a distance = 439.92 miles
In 39.7 gallons Eric can drive for a distance = [(439.92/15.6) * 39.7] miles
                                                                       = 1119.54 miles
So the total distance traveled by Eric is 1120 miles with 39.7 gallons of gas. The answer has been calculated to the nearest hundredth.
6 0
4 years ago
What is the arc length S what is shown below?
Solnce55 [7]

Answer:

  14 cm

Step-by-step explanation:

The applicable formula is ...

  s = rθ

  s = (7 cm)(2) = 14 cm

3 0
3 years ago
jake rode his bike from 2:30 to 3:30. then he took a shower.he finished his shower 30 minutes after the bike ride ended what tim
Irina-Kira [14]

Answer:

4

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • (1.5x 109) (3.5 x 109)
    8·2 answers
  • A right pyramid has a rectangular base that is 3 inches by 5 inches if the height of the pyramid is 8 inches, what is it’s volum
    14·1 answer
  • There are 24 different tables to set up for field day.The principal wants the tables set up in equal rows.should she use 3 rows
    10·1 answer
  • DOES ANYONE KNOW HOW TO DO THIS???????????????
    13·1 answer
  • Assume that females have pulse rates that are normally distributed with a mean of mu equals 74.0 beats per minute and a standard
    11·1 answer
  • What is the value of x in the equation below?<br> (12x– 24) = 16<br> o<br> оооо<br> =
    11·2 answers
  • A jar of mayonnaise is shaped like a cylinder. The radius of the jar is 1.5 in. and its height is 7 in. The mayonnaise sells for
    13·2 answers
  • The highest temperature recorded in the town of
    15·1 answer
  • Find an equation of the line that is the perpendicular bisector of the line segment joining the points (6,2) and (18,6)
    7·1 answer
  • A man walks 5 feet, turns 20 degrees and then walks another 10 feet. How far is the man from where he started? Round your answer
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!