Answer:
<h2>b = 15°</h2>
Step-by-step explanation:
If Pq = RQ then ΔPQR is the isosceles triangle. The angles QPR and PRQ have the same measures.
We know: The sum of the measures of the angeles in the triangle is equal 180°. Therefore we have the equation:
m∠QPR + m∠PRQ + m∠RQP = 180°
We have
m∠QPR = m∠PRQ and m∠RQP = 60°
Therefore
2(m∠QPR) + 60° = 180° <em>subtract 60° from both sides</em>
2(m∠QPR) = 120° <em>divide both sides by 2</em>
m∠QPR = 60° and m∠PRQ = 60°
Therefore ΔPRQ is equaliteral.
ΔPSR is isosceles. Therefore ∠SPR and ∠PRS are congruent. Therefore
m∠SPR = m∠PRS
In ΔAPS we have:
m∠SPR + m∠PRS + m∠RSP = 180°
2(m∠SPR) + 90° = 180° <em>subtract 90° from both sides</em>
2(m∠SPR) = 90° <em>divide both sides by 2</em>
m∠SPR = 45° and m∠PRS = 45°
m∠PRQ = m∠PRS + b
Susbtitute:
60° = 45° + b <em>subtract 45° from both sides</em>
15° = b
I think you forgot to put in the image
That would be 1/8 times 288, so the answer would be 36 part time workers.
Answer:
B. Variance = r2 = 0.7225
Step-by-step explanation:
Given the correlation coefficient, variance is obtained by squaring the correlation coefficient to obtain what is also know as coefficient of determination. Gives information on the predictive power of the model