Answer:
v = 26.7 mph
Explanation:
During the first 5 hours, at a constant speed of 20 mph, we find the total displacement to be as follows:
Δx₁ = v₁*t₁ = 20 mph*5 h = 100 mi
Assuming we can neglect the displacement during the speeding up from 20 to 60 mph, we can find the the total displacement at 60 mph as follows:
Δx₂ = v₂*t₂ = 60 mph*1 h = 60 mi
So, the total displacement during all the trip wil be:
Δx = Δx₁ + Δx₂ = 100 mi + 60 mi = 160 mi
So we can find the the average velocity during the 6-hour period, applying the definition of average velocity, as follows:
v = Δx / Δt = 160 mi / 6 h = 26.7 mph
Answer:
26.822 m/s
Explanation:
60 mi/hr * 5280 ft/mile * 1 hr / 3600 sec * 12 in / foot * 1 meter / 39.37 in = <u>26.822 m/s</u>
Balenced
Think of it this way if 2 same weight and same speed objects were racing toward each other perfectly straight then their forces will cancel out and the movement afterwords will be 0
We all know that the sound travels faster through solids and then liquids and then through gases.
As far as i know solids are the medium through which the sound travels fast.
But in some websites I saw that as the density increases , the velocity of the sound decreases.If this statement is correct , how come the sound travels fastest through solids (since they have higher density)
From this it is clear that not only sound as compression wave But also in the form of Shear wave travels in Solids
This makes it easier for sound to travel with higher speed in solids
Explanation:
Work done is a physical quantity that is defined as the force applied to move a body through a particular distance.
Work is only done when the force applied moves a body through a distance.
Work done = Force x distance
The maximum work is done when the force is parallel to the distance direction.
The minimum work is done when the force is at an angle of 90° to the distance direction.
So to solve this problem;
multiply the force applied by Zack and distance through which the bull was pulled.