Answer:
The distance covered is 40 m and the displacement is 31,6m.
Explanation:
The distance covered is the sum of the two distances (10+30). The displacement is equal to the distance of the hipotenusa of the triangle that the two distances (10 m to north and 30m to east) create. Using the Pythagoras theorem the displacent is equal to the Square root of (30^2 +10^2) .
The braking distance is given by 
Explanation:
When the driver of a car hits the pedal of the brakes, the car starts decelerating until it stops. Assuming the deceleration is constant, then the motion is a uniformly accelerated motion, so we can use the following suvat equation:

where
u is the initial speed of the car
v is the final speed of the car, which is zero because the car comes to rest:
v = 0
a is the acceleration of the car
s is the distance travelled by the car during the deceleration, so it is the braking distance
Therefore, re-arranging the equation for s, we find an expression for the braking distance:

Note that the sign of
is negative since the car is decelerating, therefore the final sign of
is positive.
Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
increase
Explanation:
As acceleration is the time rate of change of velocity
a = Δv/t
with t in the denominator, smaller time values result in greater acceleration values with constant velocity change.
Answer:
Least to most elongated: tungsten, copper, aluminum, nylon.
Explanation:
Materials with high Young's modulus are difficult to stretch. σ = Yε and ε = ΔL/L so an object with a high Young's modulus (Y) subject to a certain tensile stress (σ) will have a smaller strain than an object with a smaller Young's 's modulus subject to the same tensile stress. If strain (ε) is smaller, then ΔL will also be smaller.
Answer:
v= - 4.507 i - 2.363 j
Explanation:
Given that
mc= 1490 kg
vc= 9.5 m/s ( - i)
mt= 1650 kg
vt = 6.4 m/s ( -j)
There is any external force so linear momentum will remain conserve.
Lets take final speed is v.
mc .vc + mt . vt = ( mc+mt) v
1490 x 9.5 ( - i) + 1650 x 6.4 ( -j) = ( 1490+1650) v
14,155 ( -i) + 10,560 ( - j) = 3140 v
v= - 4.507 i - 2.363 j