Answer
• Improving the environmental performances
• Developing Green Mining technology
Explanation
The effect to the environment caused by opal mining are; impact on soils and geology, clearing of native vegetation disrupting flora and fauna, change in land use and effects of air quality.
Opal mining is currently examining environmental impacts and adopting measures that mitigate the impacts making the process less destructive to the environment.
With the current commitment to sustainability, opal companies are investing funds for Green Mining as a positive way to impact the environment before and after mining.
Answer:
Humans use water for many different things. We use water to stay hydrated. Our bodies need water to live. Back in the day people used water for transportation and trading. This was a way to become wealthy and exchange goods and ideas from one place to another. We also use water to clean ourselves off. If we don't we can become sick with illnesses that can harm our bodies.
Explanation:
Answer:
180.4 m
Explanation:
The package in relation to the point where it was released falls a certain distance that is calculated by applying the horizontal motion formulas , as the horizontal speed of the plane and the height above the ground are known, the time that It takes the package to reach its destination and then the horizontal distance (x) is calculated from where it was dropped, as follows:

h = 100 m
x =?
Height formula h:

Time t is cleared:


t = 4.51 sec
Horizontal distance formula x:

x = 40 m / sec x 4.51 sec
x = 180.4 m
Answer:
at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m