I would put yes as in California the dui is .08 or above
A is obviously out because it leads to a volume of 125.0 milliliters of the new solution and gives you a lower concentration than you were aiming for.
D is out because you are adding 75 milliliters of the stock solution, so your concentration would be too high. You only need 25.0 milometers of stock solution per 100 milliliters of the new solution.
C is also out because it leads to 50.0 milliliters stock solution per 100 milliliters of the new solution and hence the wrong concentration.
B is by default the correct answer. It also details the correct technique. First you add the stock solution (This you know from your calculations to be 25 milliliters.) then you add the water up to the volume you needed. (Because the calculations only tell you the total volume of water not what you need to add) You also add the water last so you can rinse the neck of the flask to make sure you also get all the stock solution residue into the stock solution.
I would add the final step of stirring, but B is the only answer that can be correct.
So the equation is balanced, meaning they have the smallest amounts of each element in the reactants to create the products.
So, 2 moles of H2S (the coefficient) contributes to 2 moles Ag2S, which is why the ratio is 2:2.
I hope that made sense.
Answer:
C. United States, Russia, and China
Explanation:
Only three nations (Russia, U.S., China) have launched their own crewed spacecraft, with the Soviets/Russians and the American programs providing rides to other nations' astronauts. Twenty-seven "first flights" occurred on Soviet or Russian flights while the United States carried fourteen.
The electronic configuration of n - 3 ion is [He] 2s2 2p3.