For the first part, use the question M=mol/vol (liters)
To do this, you have the given 1.6 M solution
divide the 360g by the molar mass of ethanol (44.07) to get moles
360/44.07=8.16 mol
so
1.6M = 8.16 mol/x vol
volume: 5.1 Liters
This problem is simply converting the concentration from molality to molarity. Molality has units of mol solute/kg solvent, while molarity has units of mol solute/L solution.
2.24 mol H2SO4/kg H2O * (0.25806 kg H2SO4/mol H2SO4) = 0.578 kg H2SO4/kg H2O
That means the solution weighs a total of 1 kg + 0.578 kg = 1.578 kg. Then, convert it to liters using the density data:
1.578 kg * (1000g / 1kg) * (1 mL/1.135 g) = 1390 mL or 1.39 L.
Hence, the molarity is
2.24/1.39 = 1.61 M
Electron affinity is the energy released when an electron is accepted by a neutral atom forming a negative ion. Chlorine has the higher electron affinity because it readily accepts an electron to become more stable. On the other hand, sodium have to give up an electron to complete its valence shell.
That 1 mole of Silicon weighs 28.0855 g. Therefore, 28.0855 g of Silicon contains 6.022×1023 of Silicon atoms. hope this helps :)
As the temperature of a liquid increases, its viscosity decreases.