Answer:
72.75 kg m^2
Explanation:
initial angular velocity, ω = 35 rpm
final angular velocity, ω' = 19 rpm
mass of child, m = 15.5 kg
distance from the centre, d = 1.55 m
Let the moment of inertia of the merry go round is I.
Use the concept of conservation of angular momentum
I ω = I' ω'
where I' be the moment of inertia of merry go round and child
I x 35 = ( I + md^2) ω'
I x 35 = ( I + 25.5 x 1.55 x 1.55) x 19
35 I = 19 I + 1164
16 I = 1164
I = 72.75 kg m^2
Thus, the moment of inertia of the merry go round is 72.75 kg m^2.
Answer:
i dont know
Explanation:im sorry to do this to you but you dont have to watch ads if you answer questions
These are the most common type of faults not just inductors but also with other elements too like resistors,transformers, generators etc.
open circuit fault means the flow of current is disrupted some how in the circuit and the circuit stops operating. and for short circuit fault the current in the system will be pretty high and this short circuit current or fault current will always run back to the fault location, if the inductor got short circuited somehow then the fault current will only run through it because it will then provide a very low impedence path
The ball only accelerates during the brief time that the club is in contact
with it. After it leaves the club face, it takes off at a constant speed.
If it accelerates at 20 m/s² during the hit, then
Force = (mass) x (acceleration) = (0.2kg) x (20 m/s²) = <em>4 newtons</em> .