1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
11

A golden-colored cube is handed to you. The person wants you to buy it for $100, saying that is a gold nugget. You pull out your

old geology text and look up gold in the mineral table, and read that its density is 19.3 g/cm3. You measure the cube and find that it is 2 cm on each side, and weighs 40 g. What is its density? Is it gold? Should you buy it?
Physics
2 answers:
kenny6666 [7]3 years ago
6 0

Answer:

Explanation:

Volume of cube=side³

=2*2*2

=8 cm³

Mass of cube=40g

Its density=mass/volume

=5g/cm³

which differs the value given in the text hence it is not gold and u should not bye it...

Instead u should call the police for arresting the person lol...

romanna [79]3 years ago
3 0
Don’t buy it it’s not gold :)
You might be interested in
Mr. Powell, a white man who does not believe that racial discrimination is a
SCORPION-xisa [38]

Answer:

Modern racism

Explanation:

Modern racism emanates from an aggressive prejudicial behavior to a more subtle prejudicial behavior. This subtle prejudicial behavior advanced to a degree that is much more difficult to see, yet is regarded as more severe. The modern form of racism is the workplace. Although many companies promise an equal opportunity, there is little doubt that everyone is treated equally within their place of work. Subtle, modern racism is believed to create an image that seems more politically correct. The politically correct way to discriminate is through a "polite" form of racism. In the past racism was easily defined and institutional

Modern racism is among the most widespread forms of verbally expressed negative racial attitudes in the United States .

3 0
3 years ago
Suppose that you are standing on a train accelerating at 0.20g. What minimum coefficient of static friction must exist between y
Ilia_Sergeevich [38]
Acceleration = (0.2 x g) = 1.96m/sec^2. 
<span>Accelerating force on 1kg. = (ma) = 1.96N. </span>
<span>1kg. has a weight (normal force) of 9.8N. </span>
<span>Coefficient µ = 1.96/9.8 = 0.2 minimum. </span>

<span>Coefficient is a ratio, so holds true for any value of mass to find accelerating force acting. </span>
<span>e.g. 75kg = (75 x g) = 735N. </span>
<span>Accelerating force = (735 x 0.2) = 147N</span>
5 0
4 years ago
Read 2 more answers
A girl standing on a bridge throws a stone vertically downward with an initial velocity of 15.0 m/s into the river below. If the
hodyreva [135]
Vi = 15 m/s
t = 2 s
a = 9.8 m/s^2
y = ?

The kinematic equation that has all of our variables is d = Vi*t + 0.5*a*t^2
y = 15*2 + 0.5*9.8*2^2 = 49.6 m
6 0
3 years ago
A sphere of mass m and radius r is released from rest at the top of a curved track of height H. The sphere travels down the curv
iren2701 [21]

Explanation:

<em>(a) On the dots below, which represent the sphere, draw and label the forces (not components) that are exerted on the sphere at point A and at point B, respectively.  Each force must be represented by a distinct arrow starting on and pointing away from the dot.</em>

At point A, there are three forces acting on the sphere: weight force mg pulling down, normal force N pushing left, and static friction force Fs pushing down.

At point B, there are three forces acting on the sphere: weight force mg pulling down, normal force N pushing down, and static friction force Fs pushing right.

<em>(b) i. Derive an expression for the speed of the sphere at point A.</em>

Energy is conserved:

PE = PE + KE + RE

mgH = mgR + ½mv² + ½Iω²

mgH = mgR + ½mv² + ½(⅖mr²)(v/r)²

mgH = mgR + ½mv² + ⅕mv²

gH = gR + ⁷/₁₀ v²

v² = 10g(H−R)/7

v = √(10g(H−R)/7)

<em>ii. Derive an expression for the normal force the track exerts on the sphere at point A.</em>

Sum of forces in the radial (-x) direction:

∑F = ma

N = mv²/R

N = m (10g(H−R)/7) / R

N = 10mg(H−R)/(7R)

<em>(c) Calculate the ratio of the rotational kinetic energy to the translational kinetic energy of the sphere at point A.</em>

RE / KE

= (½Iω²) / (½mv²)

= ½(⅖mr²)(v/r)² / (½mv²)

= (⅕mv²) / (½mv²)

= ⅕ / ½

= ⅖

<em>(d) The minimum release height necessary for the sphere to travel around the loop and not lose contact with the loop at point B is Hmin.  The sphere is replaced with a hoop of the same mass and radius.  Will the value of Hmin increase, decrease, or stay the same?  Justify your answer.</em>

When the sphere or hoop just begins to lose contact with the loop at point B, the normal force is 0.  Sum of forces in the radial (-y) direction:

∑F = ma

mg = mv²/R

gR = v²

Applying conservation of energy:

PE = PE + KE + RE

mgH = mg(2R) + ½mv² + ½Iω²

mgH = 2mgR + ½mv² + ½(kmr²)(v/r)²

mgH = 2mgR + ½mv² + ½kmv²

gH = 2gR + ½v² + ½kv²

gH = 2gR + ½v² (1 + k)

Substituting for v²:

gH = 2gR + ½(gR) (1 + k)

H = 2R + ½R (1 + k)

H = ½R (4 + 1 + k)

H = ½R (5 + k)

For a sphere, k = 2/5.  For a hoop, k = 1.  As k increases, H increases.

<em>(e) The sphere is again released from a known height H and eventually leaves the track at point C, which is a height R above the bottom of the loop, as shown in the figure above.  The track makes an angle of θ above the horizontal at point C.  Express your answer in part (e) in terms of m, r, H, R, θ, and physical constants, as appropriate.  Calculate the maximum height above the bottom of the loop that the sphere will reach.</em>

C is at the same height as A, so we can use our answer from part (b) to write an equation for the initial velocity at C.

v₀ = √(10g(H−R)/7)

The vertical component of this initial velocity is v₀ sin θ.  At the maximum height, the vertical velocity is 0.  During this time, the sphere is in free fall.  The maximum height reached is therefore:

v² = v₀² + 2aΔx

0² = (√(10g(H−R)/7) sin θ)² + 2(-g)(h − R)

0 = 10g(H−R)/7 sin²θ − 2g(h − R)

2g(h − R) = 10g(H−R)/7 sin²θ

h − R = 5(H−R)/7 sin²θ

h = R + ⁵/₇(H−R)sin²θ

4 0
3 years ago
The engine starter and a headlight of a car are connected in parallel to the 12.0-V car battery. In this situation, the headligh
stepladder [879]

Answer:

The total power they will consume in series is approximately 2.257 W

Explanation:

The connection arrangement of the headlight and the engine starter = Parallel to the battery

The voltage of the battery, V = 12.0 V

The power at which the headlight operates in parallel, P_{headlight} = 38 W

The power at which the kick starter operates in parallel, P_{kick \ starter} = 2.40 kW

We have;

P = V²/R

Where;

R = The resistance

V = The voltage = 12 V (The voltage is the same in parallel circuit)

For the headlight, we have;

R₁ = V²/P_{headlight}  = 12²/38 = 72/19

R₁ = 72/19 Ω

For the kick starter, we have;

R₂ = V²/P_{kick \ starter} = 12²/2.4 = 60

R₂ = 60 Ω

When the headlight and kick starter are rewired to be in series, we have;

Total resistance, R = R₁ + R₂

Therefore;

R = ((72/19) + 60) Ω = (1212/19) Ω

The current flowing, I = V/R

∴ I = 12 V/(1212/19) Ω = (19/101) A

We note that power, P = I²R

In the series connection, we have;

P_{headlight} = I² × R₁

∴ P_{headlight} = ((19/101) A)² × 72/19 Ω = 1368/10201 W ≈ 0.134 W

The power at which the headlight operates in series, P_{headlight, S} ≈ 0.134 W

P_{kick \ starter} = ((19/101) A)² × 60 Ω = 21660/10201 W ≈ 2.123 W

The power at which the kick starter operates in series, P_{kick \ starter, S} ≈ 2.123 W

The total power they will consume, P_{Total} = P_{headlight, S} + P_{kick \ starter, S}

Therefore;

P_{Total} ≈ 0.134 W + 2.123 W = 2.257 W

4 0
3 years ago
Other questions:
  • A 5.45-g combustible sample is burned in a calorimeter. the heat generated changes the temperature of 555 g of water from 20.5°c
    5·1 answer
  • Why is a warm, tropical cumulus cloud more likely to produce precipitation than a cold, stratus cloud?
    5·1 answer
  • Which can you do to reduce the power consumption in your home?
    10·2 answers
  • uppose a wheel is initially rotating at 10.0 rad/s while undergoing constant angular acceleration reaching a speed of 30.0 rad/s
    9·1 answer
  • A submarine has a "crush depth" (that is, the depth at which
    13·1 answer
  • A 3.63.kgkg chihuahua charges at a speed of 3.3m/s3.3m/s. What is the magnitude of the average force needed to bring the chihuah
    9·2 answers
  • A 2 kg object with a weight of 20 N is being pulled up by a rope with a tension of 12N what is the acceleration of the object
    12·1 answer
  • Example 7.3
    12·1 answer
  • 4.
    14·1 answer
  • Charge is uniformly distributed throughout a spherical insulating volume of radius R = 4.00 cm. The charge per unit volume is
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!