Answer:
430 kPa
Explanation:
Use the formula PV/T = PV/T where the left side of the equation refers to the initial values and the right side refers to the final values: (170.2 kPa)(3.5 L)/(298 K) = (P)(1.35 L)/(293 K). The P represents the unknown pressure. Solving this equation gives us a value for P of 433.855 kPa, but because of significant figures (the two from 3.5 L), we round to 430 kPa.
Answer:
the sample has mass of 50mg initially
Explanation:
https://youtu.be/ietdukGMG5c
Answer: 67 mmHg
Explanation:
According to Dalton's Gas Law, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 512 mmHg
P(oxygen) = 332 mmHg
P(carbon mono-oxide) = 113 mmHg
Remaining pressure (P3) = ?
To get P3, apply Dalton's Gas Law formula
Ptotal = P(oxygen) + P(carbon mono-oxide) + P3
512 mmHg = 332 mmHg + 113 mmHg + P3
512 mmHg = 445 mmHg + P3
P3 = 512 mmHg - 445 mmHg
P3 = 67 mmHg
Thus, the remaining pressure is 67 mmHg
<span>Ammonia, NH. Hydrogen atoms can each form one covalent bond, while and nitrogen atoms can each form three covalent bonds. Three pairs of electrons are shared in an ammonia molecule (NH3).</span>