The atomic number of H2O is 18 hence it contains 18 protons. Hope this helps.
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Answer:
330 mL of (NH₄)₂SO₄ are needed
Explanation:
First of all, we determine the reaction:
(NH₄)₂SO₄ + 2NaOH → 2NH₃ + 2H₂O + Na₂SO₄
We determine the moles of base:
(First, we convert the volume from mL to L) → 62.6 mL . 1L/1000 mL = 0.0626L
Molarity . volume (L) = 2.31 mol/L . 0.0626 L = 0.144 moles
Ratio is 2:1. Therefore we make a rule of three:
2 moles of hydroxide react with 1 mol of sulfate
Then, 0.144 moles of NaOH must react with (0.144 .1) /2 = 0.072 moles
If we want to determine the volume → Moles / Molarity
0.072 mol / 0.218 mol/L = 0.330 L
We convert from L to mL → 0.330L . 1000 mL/1L = 330 mL
Answer: atoms of hydrogen are there in
35.0 grams of hydrogen gas.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number of particles.
To calculate the moles, we use the equation:
1 mole of hydrogen = atoms
17.5 mole of hydrogen = atoms
There are atoms of hydrogen are there in
35.0 grams of hydrogen gas.