1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andru [333]
3 years ago
7

For 1983 through 1989, the per capita consumption

Physics
1 answer:
Tresset [83]3 years ago
8 0

Answer:

y = 43.55 + 2.15t

Explanation:

We were told that in 1983, the per capita consumption was 37.1 pounds, and in 1989 it was 50 pounds.

If we assume t = 0 corresponds to year 1980. Then, for 1983 it will be t = 3 and for 1989,it will be t = 9.

Thus, expressing the information as ordered pairs, we have; (3,37. 1) and (9,50).

Let us now find slope of the linear function:

m1 = (y2 - y1)/(t2 - t1)

m1 = (50 - 37.1)/(9 - 3)

m1 = 2.15

So, we can find the linear equation as;

y - 37.1 = 2.15(t - 3)

y = 37.1 + 2.15t - 6.45

y = 43.55 + 2.15t

You might be interested in
When operated on a household 110.0 V line, typical hair dryers draw about 1650 W of power. The current can be modeled as a long,
Andre45 [30]

Explanation:

Given that,

Voltage of household line, V = 110 V

Power of the hairdryer, P = 1650 W

During use, the current is about 1.95 cm from the user's hand.

(a) Power is given by :

P=V\times I\\\\I=\dfrac{P}{V}\\\\I=\dfrac{1650\ W}{110\ V}\\\\I=15\ A

(b) Again the power is given by :

P=\dfrac{V^2}{R}

R is resistance of the dryer

R=\dfrac{V^2}{P}\\\\R=\dfrac{(110)^2}{1650}\\\\R=7.34\ \Omega

(c) The magnetic field produced by the dryer at the user's hand is given by :

B=\dfrac{\mu_o I}{2\pi r}\\\\B=\dfrac{4\pi \times 10^{-7}\times 15}{2\pi \times 1.95\times 10^{-2}}\\\\B=1.53\times 10^{-4}\ T

Hence, this is the required solution.

4 0
2 years ago
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
2 years ago
Um elétron é lançado entre duas placas eletrizadas como mostra a figura. Sejam v= 6x10^6 m/s, ângulo 45°, E= 2x10^3 N/C, d= 3 cm
Svetlanka [38]
B hdbdudegjegedbfdrjf
3 0
3 years ago
A force that is doing work on a ball when that ball is falling through the air.
Ronch [10]

Answer:

i think the answer is gravity

3 0
2 years ago
Write down formula of power​
r-ruslan [8.4K]
There u go -> P=f/a
8 0
3 years ago
Read 2 more answers
Other questions:
  • A water tank in the shape of an inverted right circular cone that has a height of 12 ft and a base radius 6ft. If water is being
    13·1 answer
  • A 0.35 m2 coil with 50 turns rotates at 5 radians per sec2 in a magnetic field of 0.6 Tesla. What is the value of the rms curren
    14·1 answer
  • A water holding tank measures 85 m long, 55 m wide, and 9 m deep. Traces of mercury have been found in the tank, with a concen-
    9·1 answer
  • What wave property is shown
    5·2 answers
  • Which of these has the most inertia?
    8·1 answer
  • Which of these causes summer in the northern hemisphere?
    8·1 answer
  • HELP ASAP TIMED TEST
    5·1 answer
  • A pathogen has entered your body and you become sick. You develop a fever and vomit. This is your body's way of trying to mainta
    11·1 answer
  • Which of the following represents a covalent compound?<br> a. BeF2<br> b. KF<br> C. PCIE<br> d. Ti
    6·1 answer
  • A tube with a cap on one end, but open at the other end, has a fundamental frequency of 130.8 Hz. The speed of sound is 343 m/s
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!