1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
3 years ago
5

The amount of heat needed

Physics
1 answer:
Masteriza [31]3 years ago
4 0
J=joules, c=specific heat, q= energy, and the Tf and Ti are the final and initial temperatures cause I couldn't find a delta sign.

Q=mc(T_{f}-T_{I})  \\ 33000j=2kg*c*80 \\\frac{33000j}{2kg*80} =c \\ c=206.25jkg^{-1}
You might be interested in
A 78.5-kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above w
Dima020 [189]

Answer:

A) V_air = 1.295 L

B) Volume is not reasonable

Explanation:

A) Let;

m be total mass of the man

m_p be the mass of the man that pulled out of the water because of the buoyant force that pulled out of the lung

m_3 be the mass above the water with the empty lung

m_5 be the mass above the water with full lung

F_b be the buoyant force due to the air in the lung

V_a be the volume of air inside man's lungs

w_p be the weight that the buoyant force opposes as a result of the air.

Now, we are given;

m = 78.5 kg

m_3 = 3.2% × 78.5 = 2.512 kg

m_5 = 4.85% × 78.5 = 3.80725 kg

Now, m_p = m_5 - m_3

m_p = 3.80725 - 2.512

m_p = 1.29525 kg

From archimedes principle, we have the formula for buoyant force as;

F_b = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

F_b = w_p = 1.29525 × 9.81

F_b = 12.7064 N

As earlier said,

F_b = (ρ_water × V_air × g)

Thus;

V_air = F_b/(ρ_water × × g)

V_air = 12.7064/(1000 × 9.81)

V_air = 1.295 × 10^(-3) m³

We want to convert to litres;

1 m³ = 1000 L

Thus;

V_air = 1.295 × 10^(-3) × 1000

V_air = 1.295 L

B) From research, the average lung capacity of an adult human being is 6 litres of air.

Thus, the calculated lung volume is not reasonable

4 0
3 years ago
A 234.0 g piece of lead is heated to 86.0oC and then dropped into a calorimeter containing 611.0 g of water that initally is at
Vaselesa [24]

Answer:24.70 ^{\circ}C

Explanation:

Given

mass of lead piece m_l=234 gm\approx 0.234 kg

mass of water in calorimeter m_w=611 gm\approx 0.611 kg

Initial temperature of water T_w=24^{\circ}C

Initial temperature of lead piece T_l=24^{\circ}C

we know heat capacity of lead and water are 125.604 J/kg-k and 4.184 kJ/kg-k respectively

Let us take T ^{\circ}C be the final temperature of the system

Conserving energy

heat lost by lead=heat gained by water

m_lc_l(T_l-T)=m_wc_w(T-T_w)

0.234\times 125.604(86-T)=0.611\times 4.184\times 1000(T-24)

86-T=\frac{0.611\times 4.184\times 1000}{29.391}(T-24)

86-T=86.97T-2087.49

T=\frac{2173.491}{87.97}=24.70^{\circ}C

3 0
3 years ago
Do humans depend on photosynthesis? Explain how, why, or why not.
Elanso [62]
Humans rely on photosynthesis to generate food as well as provide energy for heating, lighting, and electricity.
4 0
2 years ago
Read 2 more answers
A jogger runs 20 mi West and then 6.0 mi North. Find the magnitude and direction of the resultant displacement.
Black_prince [1.1K]

Answer:

The magnitude of the resultant displacement is 21 mi and its direction is 16.7° north of west

Explanation:

Hi there!

Please see the figure for a better understanding of the problem. The total displacement vector will be the sum of both displacements:

The vector for the first displacement is:

First displacement = (20 mi, 0)

The second displacement:

Second displacement = (0, 6.0 mi)

The resultant displacement will be:

R = (20 mi, 0) + (0, 6.0 mi) = (20 mi + 0, 0 + 6.0 mi) = (20 mi, 6.0 mi)

The magnitude of this vector will be:

|R| = \sqrt{(20 mi)^{2} + (6.0 mi)^{2}} = 21 mi

The magnitude of the vector displacement is 21 mi.

To find the direction of the vector R, we have to apply trigonometry:

In a right triangle the following trigonometric rule applies:

cos θ = adjacent side to the angle/ hypotenuse

In this case:

cos θ = 20 mi / magnitude of R

θ = 16.7°

The direction of the vector is 16.7° north of west.

4 0
3 years ago
Bohr analyzed the spectral lines of hydrogen.<br><br>true or false?​
trasher [3.6K]

Answer:

I think it is false. Johann balmer analyzed the spectral lines of hydrogen

6 0
2 years ago
Other questions:
  • Answer please I need help
    8·1 answer
  • A dolphin's tops speed is 17 m/s. If a dolphin swam at this constant velocity for one hour
    7·1 answer
  • Find the acceleration of a body whose velocity increases from 11ms-1 to 33ms-1 in 10 seconds
    6·2 answers
  • Why metal wire coated with plastic or rubber is used in electric circuits
    11·1 answer
  • A Carnot heat engine uses a hot reservoir consisting of a large amount of boiling water and a cold reservoir consisting of a lar
    11·1 answer
  • Reason behind the study of refraction of light
    7·1 answer
  • There is given an ideal capacitor with two plates at a distance of 3 mm. The capacitor is connected to a voltage source with 12
    8·1 answer
  • What effect does the Boat Velocity have on the waves seen by the observer?
    13·1 answer
  • How long did it take the flag to rotate once in a full circle
    9·1 answer
  • Type the correct answer in each box. Round your answers to the nearest hundredth.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!