We know that whoever she is is traveling to Antarctica or elsewhere
in the south polar region. June is the beginning of Winter there, with
zero to extremely short daylight.
But we still don't know her name.
<h3>Question:</h3>
How to find g (acceleration due to gravity)
<h3>Solution:</h3>
We know,
Acceleration due to gravity (g)
![= \frac{GM}{ {R}^{2} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Cfrac%7BGM%7D%7B%20%7BR%7D%5E%7B2%7D%20%7D%20)
where, G = Gravitational constant
![= 6.67 \times {10}^{11} N {m}^{2}/k {g}^{2} \\](https://tex.z-dn.net/?f=%20%3D%206.67%20%5Ctimes%20%20%7B10%7D%5E%7B11%7D%20N%20%7Bm%7D%5E%7B2%7D%2Fk%20%7Bg%7D%5E%7B2%7D%20%20%5C%5C%20)
M = Mass of the earth
![= 6 \times {10}^{24} \: kg](https://tex.z-dn.net/?f=%20%3D%206%20%5Ctimes%20%20%7B10%7D%5E%7B24%7D%20%5C%3A%20%20kg)
R = Radius of the earth
![= 6.4 \times {10}^{6} m](https://tex.z-dn.net/?f=%20%3D%206.4%20%5Ctimes%20%20%7B10%7D%5E%7B6%7D%20m)
Putting these values of G, M and R in the above formula, we get
![g \: = \: \frac{6.67 \times {10}^{11} N {m}^{2}/k {g}^{2} \times \: 6 \times {10}^{24} \: kg }{(6.4 \times {10}^{6}m {)}^{2} } \\ = 9.8m/ {s}^{2}](https://tex.z-dn.net/?f=g%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%5Cfrac%7B6.67%20%5Ctimes%20%20%7B10%7D%5E%7B11%7D%20N%20%7Bm%7D%5E%7B2%7D%2Fk%20%7Bg%7D%5E%7B2%7D%20%20%20%5Ctimes%20%5C%3A%206%20%5Ctimes%20%20%7B10%7D%5E%7B24%7D%20%5C%3A%20%20kg%20%7D%7B%286.4%20%5Ctimes%20%20%7B10%7D%5E%7B6%7Dm%20%7B%29%7D%5E%7B2%7D%20%20%7D%20%20%5C%5C%20%20%3D%209.8m%2F%20%7Bs%7D%5E%7B2%7D%20)
So, the value of acceleration due to gravity is
![9.8m/s ^{2}](https://tex.z-dn.net/?f=9.8m%2Fs%20%5E%7B2%7D%20)
Hope it helps.
Do comment if you have any query.
Yes because if they are further away it makes it hard for them to attract each other
The diagram shows components that have been added together to form Rx and Ry. Rx and Ry are the components of the resultant vector.
Which formula can be used to find the angle of the resultant vector?
the answer is C
C. tan0= Ry/Rx
Answer:
They developed during the Cambrian time period, which was around 530 million years ago.
Explanation:
Hope this Helps!