Answer:
The answer is 6.40 meters.
Explanation:
The speed v = √(2gh)
v = √( 2×9.8×6.4) = 11.2 m/s
After, finding the time it takes to hit the ground from a height of 1.6 meters.
time = √(2H÷g)
time = √(2×1.6÷9.8)
time = 0.5714 seconds.
Horizontal distance is speed × time = 11.2 × 0.5714 = 6.40 meters.
Answer:
The acceleration is about 9.8 m/s2 (down) when the ball is falling.
Explanation:
The ball at maximum height has velocity zero
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s² (positive downward and negative upward)

The accleration 9.8 m/s² will always be acting on the body in opposite direction when the body is going up and in the same direction when the body is going down. The acceleration on the body will never be zero
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m
It decreases because it gave its momentum to the other car.
Answer:

Explanation:
The inlet specific volume of air is given by:

The mass flow rates is expressed as:

The energy balance for the system can the be expresses in the rate form as:
![E_{in}-E_{out}=\bigtriangleup \dot E=0\\\\E_{in}=E_{out}\\\\\dot m(h_1+0.5V_1^2)=\dot W_{out}+\dot m(h_2+0.5V_2^2)+Q_{out}\\\\\dot W_{out}=\dot m(h_2-h_1+0.5(V_2^2-V_1^2))=-m({cp(T_2-t_1)+0.5(V_2^2-V_1^2)})\\\\\\\dot W_{out}=-(10.42lbm/s)[(0.25\frac{Btu}{lbm.\textdegree F})(300-900)\textdegree F+0.5((700ft/s)^2-(350ft/s)^2)(\frac{1\frac{Btu}{lbm}}{25037ft^2/s^2})]\\\\\\\\=1486.5\frac{Btu}{s}](https://tex.z-dn.net/?f=E_%7Bin%7D-E_%7Bout%7D%3D%5Cbigtriangleup%20%5Cdot%20E%3D0%5C%5C%5C%5CE_%7Bin%7D%3DE_%7Bout%7D%5C%5C%5C%5C%5Cdot%20m%28h_1%2B0.5V_1%5E2%29%3D%5Cdot%20W_%7Bout%7D%2B%5Cdot%20m%28h_2%2B0.5V_2%5E2%29%2BQ_%7Bout%7D%5C%5C%5C%5C%5Cdot%20W_%7Bout%7D%3D%5Cdot%20m%28h_2-h_1%2B0.5%28V_2%5E2-V_1%5E2%29%29%3D-m%28%7Bcp%28T_2-t_1%29%2B0.5%28V_2%5E2-V_1%5E2%29%7D%29%5C%5C%5C%5C%5C%5C%5Cdot%20W_%7Bout%7D%3D-%2810.42lbm%2Fs%29%5B%280.25%5Cfrac%7BBtu%7D%7Blbm.%5Ctextdegree%20F%7D%29%28300-900%29%5Ctextdegree%20F%2B0.5%28%28700ft%2Fs%29%5E2-%28350ft%2Fs%29%5E2%29%28%5Cfrac%7B1%5Cfrac%7BBtu%7D%7Blbm%7D%7D%7B25037ft%5E2%2Fs%5E2%7D%29%5D%5C%5C%5C%5C%5C%5C%5C%5C%3D1486.5%5Cfrac%7BBtu%7D%7Bs%7D)
Hence, the mass flow rate of the air is 1486.5Btu/s