Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.
Answer:
when they have the same slope
Answer:
they use thermals and air currents to glide.
Explanation:
when they flap higher they use thermals and air currents because flapping takes a lot of fuel,energy
<span>As long as both mirrors are set at 45% and the same size then you see the same as is reflected in the upper mirror </span>
<span>Put a lens in the middle of the tube </span>
<span>? </span>
<span>We use mirrors when we drive cars ect </span>
<span>Normally they are set across from a concealed entrance or one that is hard to see both ways like the inside of a hairpin bend. Sometimes only to help in one direction. </span>
<span>Sonar which is sound waves that are sent out at a set rate then reflected by objects. The longer the gap between the two the further away it is, They still use periscopes to target boats though. </span>
<span>The periscope can only reflect what is outside so if you could see it because there is enough light then Yes. If you could not see it because it is dark then No unless you get into Info-Red light or Image Intensifying systems as well </span>
<h3><u>Answer;</u></h3>
= 21600 Joules or 21.6 Kilo joules
<h3><u>Explanation;</u></h3>
Electrical energy is given by the formula = VIt ;
where V is the voltage in volts, I is the current in Amperes, and t is time in seconds.
Voltage = 120 volts
Current = 3 amperes
Time = 60 seconds or 1 minute
Therefore;
Electrical energy = 120 × 3 × 60
<u> = 21600 Joules or 21.6 Kilo joules</u>