Answer:
2.43J
Explanation:
Given parameters:
Mass of the arrow = 0.155kg
Velocity = 31.4m /s
Unknown:
Kinetic energy when it leaves the bow = ?
Solution:
The kinetic energy of a body is the energy in motion of the body;
it can be derived using the expression below:
K.E =
m v²
m is the mass
v is the velocity
Solve for K.E;
K.E =
x 0.155 x 31.4 = 2.43J
Answer:
Explanation:
Average acceleration
is the variation of velocity
over a specified period of time
:
Where:
being
the initial velocity and
the final velocity (according to the information given from the described graph)

Then:
-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.
Answer:
a) θ = 2500 radians
b) α = 200 rad/s²
Explanation:
Using equations of motion,
θ = (w - w₀)t/2
θ = angle turned through = ?
w = final angular velocity = 1420 rad/s
w₀ = initial angular velocity = 420
t = time taken = 5s
θ = (1420 - 420) × 5/2 = 2500 rads
Again,
w = w₀ + αt
α = angular accelaration = ?
1420 = 420 + 5α
α = 1000/5 = 200 rad/s²
The work done to stretch the spring will be 112 J.
<h3>What is spring force?</h3>
The force required to extend or compress a spring by some distance scales linearly with respect to that distance is known as the spring force. Its formula is
F = kx
The given data in the problem is;
F is the spring force =?
K is the spring constant= 8.5 N/m
x is the length by which spring got stretched = 1.2m
The work is done to stretch the spring is;

To learn more about the spring force refer to the link;
brainly.com/question/4291098
#SPJ1