Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 
Answer:
a)= 98kJ
b)=108kJ
c) = 10kJ
Explanation:
a. The work that is done by gravity on the elevator is:
Work = force * distance
= mass * gravity * distance
= 1000 * 9.81 * 10
= 98,000 J
= 98kJ
b)The net force equation in the cable
T - mg = ma
T = m(g+a)
T = 1000(9.8 + 10)
T = 10800N
The work done by the cable is
W = T × d
= 10800N × 10
= 108000
=108kJ
c) PE at 10m = 1000 * 9.81 * 10 = 98,100 J
Work done by cable = PE +KE
108,100 J = KE + 98,100 J
KE = 10,000 J
= 10kJ
=