Answer:
The voltage needed to accelerate the electron beam is 2.46 x 10^16 Volts
Explanation:
The rate of electron flow is given as:
q = 1015 electrons per second
The total current is given by:
Total Current = (Rate of electron flow)(Charge on one electron)
Total Current = I = (1015 electrons/s)(1.6 x 10^-19 C/electron)
I = 1.624 x 10^-16 A
Now, we know that electric power is given as:
Electric Power = Current x Voltage
P = IV
V = P/I
V = 4 W/1.624 X 10^-16 A
<u>V = 2.46 x 10^16 Volts</u>
A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s) with a flow rate of 8.7 m^3/s, 6 mg/L BOD5 and 8.3 mg/L DO. Both streams are at 20°C. After mixing, the river is 3 meters deep and flowing at a velocity of 0.50 m/s. DOsat for this river is 9.0 mg/L. The deoxygenation constant is kd= 0.20 d^-1 and The reaction rate constant k at 20 °C is 0.27 d^-1.
The answer therefore would be the number 0.27 divided by two and then square while getting the square you would make it a binomial.
I wont give the answer but the steps
Your Welcome