1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mamont248 [21]
3 years ago
12

What is Elon Musk mad about?

Engineering
1 answer:
boyakko [2]3 years ago
6 0

Answer:

Tesla CEO Elon Musk tweeted that the company's stock was too high, and it immediately dropped in value. The tweet may have violated a deal Musk made with the SEC about his tweets and Tesla. Musk also tweeted patriotic lyrics, said his girlfriend Grimes is mad at him, and noted that their child is due on Monday

You might be interested in
Explain how potential energy converts to kinetic energy in the loop-the-loop section of the roller coaster. Make sure to note wh
larisa86 [58]

Answer:

lol

Explanation:

8 0
3 years ago
What is the never repeat rule
Soloha48 [4]
Don't repeat yourself (DRY, or sometimes do not repeat yourself) is a principle of software development aimed at reducing repetition of software patterns,[1] replacing it with abstractions or using data normalization to avoid redundancy.
4 0
3 years ago
What are the different types of documents used to communicate engineering designs?
Ipatiy [6.2K]

Answer:

COMMON ENGINEERING DOCUMENTS

Inspection or trip reports.

Research, laboratory, and field reports.

Specifications.

Proposals.

Progress reports.

ect...

Explanation:

7 0
3 years ago
I don’t get this it’s hella hard
qwelly [4]

Answer:

V₂ = 20 V

Vt = 20 V

V₁ = 20 V

V₃ = 20 V

I₁ = 10 mA

I₃ = 3.33 mA

It = 18.33 mA

Rt = 1090.91 Ω

Pt = 0.367 W

P₁ = 0.2 W

P₂ = 0.1 W

P₃ = 0.067 W

Explanation:

Part of the picture is cut off.  I assume there is a voltage source Vt there?

First, use Ohm's law to find V₂.

V = IR

V₂ = (0.005 A) (4000 Ω)

V₂ = 20 V

R₁ and R₃ are in parallel with R₂ and the voltage source Vt.  That means V₁ = V₂ = V₃ = Vt.

V₁ = 20 V

V₃ = 20 V

Vt = 20 V

Now we can use Ohm's law again to find I₁ and I₃.

V = IR

I = V/R

I₁ = (20 V) / (2000 Ω)

I₁ = 0.01 A = 10 mA

I₃ = (20 V) / (6000 Ω)

I₃ = 0.00333 A = 3.33 mA

The current It passing through Vt is the sum of the currents in each branch.

It = I₁ + I₂ + I₃

It = 10 mA + 5 mA + 3.33 mA

It = 18.33 mA

The total resistance is the resistance of the parallel resistors:

1/Rt = 1/R₁ + 1/R₂ + 1/R₃

1/Rt = 1/2000 + 1/4000 + 1/6000

Rt = 1090.91 Ω

Finally, the power is simply each voltage times the corresponding current.

P = IV

Pt = (0.01833 A) (20 V)

Pt = 0.367 W

P₁ = (0.010 A) (20 V)

P₁ = 0.2 W

P₂ = (0.005 A) (20 V)

P₂ = 0.1 W

P₃ = (0.00333 A) (20 V)

P₃ = 0.067 W

7 0
3 years ago
An air-standard Carnot cycle is executed in a closed system between the temperature limits of 350 and 1200 K. The pressures befo
SVEN [57.7K]

This question is incomplete, the complete question is;

An air-standard Carnot cycle is executed in a closed system between the temperature limits of 350 and 1200 K. The pressures before and after the isothermal compression are 150 and 300 kPa, respectively. If the net work output per cycle is 0.5 kJ, determine (a) the maximum pressure in the cycle, (b) the heat transfer to air, and (c) the mass of air. Assume variable specific heats for air.

Answer:

a) the maximum pressure in the cycle is 30.01 Mpa

b) the heat transfer to air is 0.7058 KJ

c) mass of Air is 0.002957 kg

Explanation:

Given the data in the question;

We find the relative pressure of air at 1200 K (T1) and 350 K ( T4)

so from the "ideal gas properties of air table"

Pr1 = 238

Pr4 = 2.379

we know that Pressure P1 is only maximum at the beginning of the expansion process,

so

now we express the relative pressure and pressure relation for the process 4-1

P1 = (Pr2/Pr4)P4

so we substitute

P1 = (238/2.379)300 kPa

P1 = 30012.6 kPa = 30.01 Mpa

Therefore the maximum pressure in the cycle is 30.01 Mpa

b)

the Thermal heat efficiency of the Carnot cycle is expressed as;

ηth = 1 - (TL/TH)

we substitute

ηth = 1 - (350K/1200K)

ηth = 1 - 0.2916

ηth = 0.7084

now we find the heat transferred

Qin = W_net.out / ηth

given that the net work output per cycle is 0.5 kJ

we substitute

Qin = 0.5 / 0.7084

Qin = 0.7058 KJ

Therefore, the heat transfer to air is 0.7058 KJ

c)

first lets express the change in entropy for process 3 - 4

S4 - S3 = (S°4 - S°3) - R.In(P4/P3)

S4 - S3 = - (0.287 kJ/Kg.K) In(300/150)kPa

= -0.1989 Kj/Kg.K = S1 - S2

so that; S2 - S1 = 0.1989 Kj/Kg.K

Next we find the net work output per unit mass for the Carnot cycle

W"_netout = (S2 - S1)(TH - TL)

we substitute

W"_netout = ( 0.1989 Kj/Kg.K )( 1200 - 350)K

= 169.065 kJ/kg

Finally we find the mass

mass m = W_ net.out /  W"_netout

we substitute

m = 0.5 / 169.065

m = 0.002957 kg

Therefore, mass of Air is 0.002957 kg

5 0
3 years ago
Other questions:
  • If the value of the feedback resistor in the filter is changed but the value of the resistor in the forward path is unchanged, w
    14·1 answer
  • In many problems where the potential energy is considered between two objects, the potential energy is defined as zero when the
    8·1 answer
  • A household refrigerator that has a power input of 450 W and a COP of 1.5 is to cool 5 large watermelons, 10 kg each, to 8 C. If
    7·1 answer
  • Which of these is least likely a step in replacing a failed compressor?
    12·2 answers
  • A water jet strikes normal to a fixed plate. If diameter of the outlet of the nozzle is 8 cm,and velocity of water at the outlet
    11·1 answer
  • the frequencies 10, 12, 23 and 45 Hz. (a) What is the minimum sampling rate required to avoid aliasing? (b) If you sample at 40
    13·1 answer
  • A long rod of 60-mm diameter and thermophysical properties rho=8000 kg/m^3, c=500J/kgK, and k=50 W/mK is initally at a uniform t
    8·1 answer
  • By using order of magnitude analysis, the continuity and Navier-Stokes equations can be simplified to the Prandtl boundary-layer
    9·1 answer
  • Three 1.83 in. diameter bolts are used to connect the axial member to the support in a double shear connection. The ultimate she
    8·1 answer
  • How to study thermodynamics?​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!