Answer:
170 N
Explanation:
Since Force F = ma were m = mass = 85 kg and a = acceleration = 2.0 m/s².
So the net force on the bicycle is
F = ma = 85 kg × 2.0 m/s² = 170 N
Answer:
-39.2m/s
Explanation:
Using the equation of motion;
v = u + at
Since the ball is thrown upward, the acceleration due to gravity acting on it will be negative, hence a = -g
v = u - gt
Since g = 9.8m/s²
t = 4.0s
u = 0m/s
v = 0 + (-9.8)(4)
v = 0 + (-9.8)(4)
v = -39.2m/s
Hence the speed of the ball before release is -39.2m/s
Answer:
13.33 or 13 1/3m/s (meters per second)
Explanation:
In physics, we use the basic units of meters and seconds. So first convert (km) into meters (m) and also hours and minutes into seconds (s). We end up with 120000m and 9000s. Then divide the 120000m by the 9000s and you end up with 13.33 or 13 1/3 m/s.
Hello there,
400 meters= 0.4 km
Time= Distance / speed
= 0.4 / 69
= 0.0057971014492754 hr
= 0.35 min
Hope this helps :))
~Top
1 g = 1 ÷ 1000 kg
= 0.001 kg
1 cm³ = 1 ÷ 100 ÷ 100 ÷ 100 m³
= 0.000001 m³
1 g/cm³ = 1 g / 1 cm³
= 0.001 kg / 0.000001 m³
= 1000 kg/m³
The density is 1000 kg/m³.