Answer:
I believe it is B,fluorine to complete the octet rule
Explanation:
Answer:
1. All red calves i.e. RR
2. All roan calves i.e RW
3. 2 red calves (RR) and two roan calves (RW)
Explanation:
According to this question, a gene coding for fur colour in cattle is involved. Red alleles (R) and white alleles (W) are co-dominant to produce a roan cattle (RW). The possible traits of the following crosses are (see attached punnet square):
1) A red bull (RR) is mated to a red (RR) cow: All red calves i.e. RR
2) A red (RR) bullis mated with white (WW) cow: All roan calves i.e RW
3) A roan bull (RW) is mated with red (RR) cow: 2 red calves (RR) and two roan calves (RW).
Answer:
324.18 g/mol
Explanation:
Let the molecular mass of the antimalarial drug, Quinine is x g/mol
According to question,
Nitrogen present in the drug is 8.63% of x
So, mass of nitrogen = 
Also, according to the question,
2 atoms are present in 1 molecule of the drug.
Mass of nitrogen = 14.01 amu = 14.01 g/mol (grams for 1 mole)
So, mass of nitrogen = 14.01×2 = 28.02
These 2 must be equal so,

solving for x, we get:
<u>x = 324.18 g/mol</u>
Answer:
There will be one Al3+ ion.
There will be 3 NO3- ions
Explanation:
Dissociation equation:
Al(NO₃)₃ → Al³⁺ + 3NO₃¹⁻
When aluminium nitrate dissociate it produces one silver ion (Al³⁺) and three (NO₃¹⁻) ions.
Properties of Al(NO₃)₃:
It is inorganic compound having molecular mass 169.87 g/mol.
It is white odor less compound.
Its density is 4.35 g/mL.
Its melting and boiling points are 120°C and 440°C.
It is soluble in water.
It is sued to treat infections.
It is used in the photographic films.
It s toxic and must be handled with great care.
Answer:
Endothermic
It absorbs heat
1.20 × 10³ kJ
Explanation:
Let's consider the following thermochemical equation.
2 H₂O(l) → 2 H₂(g) + O₂(g) ΔH = 572 kJ
Since ΔH > 0, the reaction is endothermic, that is, it absorbs heat when H₂O reacts.
572 kJ are absorbed when 36.03 g of water react. The heat absorbed when 75.8 g of H₂O react is:
75.8 g H₂O × (572 kJ/36.03 g H₂O) = 1.20 × 10³ kJ