4 x 6 = 24 because of the coefficient 4 and the subscript 6
When CH₄ is burnt in excess O₂ following products are formed,
CH₄ + 2 O₂ → CO₂ + 2 H₂O
According to equation 1 mole of CH₄ (16 g) reacts with 2 moles of O₂ to produce 1 mole of CO₂ and 2 moles of H₂O. Hence the products are,
1 mole of CO₂ and 2 moles of H₂O
Converting 1 mole CO₂ to grams;
As,
Mass = Moles × M.mass
Mass = 1 mol × 44 g.mol⁻¹
Mass = 40 g of CO₂
Converting 2 moles of H₂O to grams,
Mass = 2 mol × 18 g.mol⁻¹
Mass = 36 g of H₂O
Total grams of products;
Mass of CO₂ = 44 g
+ Mass of H₂O = 36 g
-------------
Total = 80 g of Product
Result:
80 grams of product is formed when 16 grams of CH₄ is burnt in excess of Oxygen.
Answer:
double replacement occurs
Answer:
Some areas of the body are more sensitive than others because they have more nerve endings. It hurts when you bite your tongue because the sides of your tongue have a lot of nerve endings that are very sensitive to pain! The tongue, lips, and fingertips are the most touch-sensitive parts of the body. The parts of your skin that need to be most sensitive like your fingertips and your lips have more receptor cells in them than others less sensitive areas. The least sensitive skin on the human body is found in the heel area. This is because there are very few nerves in the heel to feel things. If there were too many nerves in our heels then walking would be far too painful.
Explanation:
Answer:
BF3
Explanation:
For this question, you need to use the number of valence electrons present in each element. Boron is in group 3/13 on the periodic table so you know it has 3 valence electrons while Fluorine is in group 7/17 so it has 7 valence electrons. These elements are both covalent so they will share electrons. All elements in the first three rows want to reach either have 8 valence electrons or zero valence electrons depending on whichever is easier. When B and F interact each Fluorine will only want to take one electron, but Boron wants to get rid of all 3 electrons, so it will bond with 3 Fluorine to get rid of all its valence electrons.
I hope this helps.