Answer:
Reference image attached
Explanation:
Please see the attached image.
Answer:
1.atomic number
2.electron
3.element
4.atom
5.neutron
6.nucleus
7.proton
Explanation:
please like and Mark as brainliest
Answer:
1.0
Explanation:
Hydrochloric acid is a strong acid, that is, an acid that dissociates completely, according to the following reaction.
HCl(aq) → H⁺(aq) + Cl⁻(aq)
Then, the concentration of H⁺ will be equal to the initial concentration of the acid, i.e., 0.10 M.
We can calculate the pH using the following expression.
pH = -log [H⁺] = -log 0.10 = 1.0
The choices for this are as follows:
A) gases; solids
B) metals; nonmetals
C) nonmetals; metals
<span>D) reactive; nonreactive
</span>
I think the correct answer is option B. The stair-step line between the pink squares and the yellow squares separates the metals from the nonmetals. Hope this helps.
KOH+ HNO3--> KNO3+ H2O<span>
From this balanced equation, we know that 1 mol
HNO3= 1 mol KOH (keep in mind this because it will be used later).
We also know that 0.100 M KOH aqueous
solution (soln)= 0.100 mol KOH/ 1 L of KOH soln (this one is based on the
definition of molarity).
First, we should find the mole of KOH:
100.0 mL KOH soln* (1 L KOH soln/
1,000 mL KOH soln)* (0.100 mol KOH/ 1L KOH soln)= 1.00*10^(-2) mol KOH.
Now, let's find the volume of HNO3 soln:
1.00*10^(-2) mol KOH* (1 mol HNO3/ 1 mol KOH)* (1 L HNO3 soln/ 0.500 mol HNO3)* (1,000 mL HNO3 soln/ 1 L HNO3 soln)= 20.0 mL HNO3 soln.
The final answer is </span>(2) 20.0 mL.<span>
Also, this problem can also be done by using
dimensional analysis.
Hope this would help~
</span>