Answer:
30.3 g
Explanation:
At STP, 1 mol of any gas will occupy 22.4 L.
With the information above in mind, we <u>calculate how many moles are there in 32.0 L</u>:
- 32.0 L ÷ 22.4 L/mol = 1.43 mol
Then we <u>calculate how many moles would there be in 16.6 L</u>:
- 16.6 L ÷ 22.4 L/mol = 0.741 mol
The <u>difference in moles is</u>:
- 1.43 mol - 0.741 mol = 0.689 mol
Finally we <u>convert 0.689 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 0.689 mol * 44 g/mol = 30.3 g
Answer:
use the rule of speed
Explanation:
speed =distance over time
Due to lava which heats water where water vapour is comes
Answer:
electrophile(H⁺) is needed to react with alkene in the first step and nucleophile (OH⁻) is not available in the first step
Explanation:
The pH a 0.25 m solution of C₆H₅NH₂ is equal to 3.13.
<h3>How do we calculate pH of weak base?</h3>
pH of the weak base will be calculate by using the Henderson Hasselbalch equation as:
pH = pKb + log([HB⁺]/[B])
pKb = -log(1.8×10⁻⁶) = 5.7
Chemical reaction for C₆H₅NH₂ is:
C₆H₅NH₂ + H₂O → C₆H₅NH₃⁺ + OH⁻
Initial: 0.25 0 0
Change: -x x x
Equilibrium: 0.25-x x x
Base dissociation constant will be calculated as:
Kb = [C₆H₅NH₃⁺][OH⁻] / [C₆H₅NH₂]
Kb = x² / 0.25 - x
x is very small as compared to 0.25, so we neglect x from that term and by putting value of Kb, then the equation becomes:
1.8×10⁻⁶ = x² / 0.25
x² = (1.8×10⁻⁶)(0.25)
x = 0.67×10⁻³ M = [C₆H₅NH₃⁺]
On putting all these values on the above equation of pH, we get
pH = 5.7 + log(0.67×10⁻³/0.25)
pH = 3.13
Hence pH of the solution is 3.13.
To know more about Henderson Hasselbalch equation, visit the below link:
brainly.com/question/13651361
#SPJ4